行政院原子能委員會放射性物料管理局
委託研究計畫期末報告

核能電廠除役作業安全分析之審查技術研究

計畫編號：104FCMA008
執行單位：國立清華大學
計畫主持人：林志宏
報告作者：林志宏、徐仲彥、王俊仁
報告日期：中華民國 104 年 12 月
（本頁空白）
中文摘要

本計畫目的在協助主管機關進行除役計畫審查前，建立起核能電廠除役作業安全之審查技術研究，以作為未來核能電廠除役管制作業及審查之參考。本子計畫為核能電廠除役作業安全分析之審查技術研究，目的係廣泛蒐集國內外相關核電廠除役之相關安全分析案例，並針對除役審查作業提出相關重點和關鍵事項，進一步提出未來安全審查之建議，以協助除役與各項除役作業計畫之審查，使除役計畫規劃順利執行，得於預定期程內完成除役工作。
The objective of this project is to assist the Administration of Government in establishing the review technology of safety research before reviewing the decommissioning plan. The effort can be regarded as the decommissioning basis for future nuclear power plants. This subproject is focused on Study of Review Technology on Safety Code for Nuclear Power Plants Decommissioning. The objective of this study is to set up to extensively collect and integrated related cases on safety analysis, and review cases related to nuclear power plants. The priorities and key issues for the decommissioning would be listed and further propose administration recommendations from the review results is to assist the Council in auditing the decommissioned plans. The project will promote the successful completion of the decommissioning plan within the scheduled time.
目錄

第一章 研究背景與目的 ... 1

1.1 前言 .. 1

1.2 研究目的 ... 4

第二章 除役計畫之安全分析工作 ... 6

2.1 蒐集彙整除役之安全相關資訊 ... 6

2.2 國外電廠實際經驗案例分析 .. 7

2.3 核能電廠除役之安全分析研究及審查規範研訂 7

2.4 假想事故評估之重點審查 ... 8

第三章 國内外除役報告與相關法規 .. 10

3.1 國外除役相關法規與現況 .. 10

3.1.1 10 CFR Part 50.59 - Changes, Tests, and Experiments 11

3.1.2 10 CFR Part 50.82 - Termination of License 12

3.1.3 IAEA 除役研究 ... 13

3.1.4 OECD/NEA 除役研究 ... 20

3.2 國內除役現況與法規要求 ... 21

第四章 國際間除役情況與實際案例 ... 24

4.1 國際核能電廠除役概況 ... 24

4.1.1 美國概況 .. 24
4.1.2 德國概況

4.1.3 日本概況

4.2 國外電廠實際經驗案例

4.2.1 Oyster Creek 核能電廠

4.2.2 Yankee Rowe 核能電廠

4.2.3 Connecticut Yankee 核能電廠

第五章 除役安全審查要點與評估

5.1 廠址與設施之輻射特性調查

5.2 除役期間仍須運轉之重要系統

5.3 除役時程、使用之設備、方法及安全作業程式

5.4 除役期間預期之意外事件安全分析

5.5 輻射劑量評估及輻射防護措施

5.6 品質保證方案

5.7 假想事故評估與審查

第六章 結論與建議

參考文獻
圖目錄

圖 3-1、IAEA 安全評估作業流程圖 ... 16

圖 4-1、Big Rock Point 核能電廠 ... 26

圖 4-2、Yankee Rowe 核能電廠除役前的狀況 ... 27

圖 4-3、Yankee Rowe 核能電廠的 ISFSI ... 27

圖 4-4、Yankee Rowe 核能電廠廠址開放後的狀況 28

圖 4-5 Connecticut Yankee 核能電廠運轉期間的廠址 38

圖 4-6 2003 年 12 月地下水監測狀態 ... 40

圖 4-7 整治前氚趨勢 ... 40

圖 4-8 整治前鍶 90 趨勢 .. 41

圖 4-9 地下水位以下的土壤/基岩整治區 ... 42

圖 4-10 包括後期整治成果的氚趨勢 ... 44

圖 4-11 包括後期整治成果的鈾-90 趨勢 ... 45

圖 5-1、(a)核一廠廠址區域，(b)等高線圖 ... 58

圖 5-2、金山電廠之研究模型圖 ... 59

圖 5-3、核種隨時間分布圖 ... 60

圖 5-4、放射性核種質量隨時間變化圖 ... 60
第一章 研究背景與目的

1.1 前言

國際上為了對核反應爐設施的除役能提供一致的方法，除了吸取先前已除役或正在進行除役工作的核能電廠所獲得的經驗外，各國皆表示在國際上認可關於安全評估計畫或重要報告中必須有核能電廠的除役導則。所謂的除役是指允許對一座核能設施解除部分或全部監管所採取的行政管理行動和技術行動。這些行動包括放射性材料、廢物、組件和建築物的去汙、拆除。執行這些行動是為了有計劃逐步減少放射危害，為了確保除役操作期間的安全，這些行動都是根據事先的計畫和評定採取的。核能電廠的除役活動時間可以從幾年至幾十年，其中會考慮到放射性衰變的因素。故除役可以在核反應器關閉後以連續操作方式進行，亦可以在一段時間內以間斷操作的方式進行，此即為分階段除役。然而，對任何除役工作與核能設施繼續運行之間的相互影響所可能引起的安全問題，則將需要根據當時的具體情況做進一步的處理。

核能電廠執行除役的主要原因不外乎：發生核能設施意外事件與安全方面的顧慮、管制要求導致提高運轉成本、國家能源政策走向等原因。所謂的核能設施除役定義係為涵蓋所有核能相關設施中止運轉並關閉，直到廠址解除輻射防護管制並恢復無限制使用為止。美國核管會(Nuclear Regulatory Commission, NRC)針對核能電廠除役的方式主要有三種：
立即拆除（DECON）

核能電廠運轉到達所設計之壽命後一段時間內，將廠內用過核燃料移出燃料池，並將所有含放射性物質的設備、組件、結構與部分設施除汙後並拆除，根據其放射性活度符合將其移至放射性廢棄物處置場，使廠址達到無限制使用之條件。

延遲拆除（SAFSTOR）

核能電廠運轉到達所設計之壽命且所有設施停止運轉後，先維持在一穩定的狀況，使設施內之放射性核種經一段時間衰變後，再進行各設備與組件之除汙與拆除工作，並將其移出廠區，使廠址達到無限制使用之條件。

固封除役（Entombing）

核能電廠運轉到達所設計之壽命後，將廠內所有用過核燃料、放射性廢液與活度較低的放射性廢棄物及可再利用之組件移出廠區，並將殘留有高放射性或高污染性設備、組件密封在混凝土的遮罩內。除了密封之設施須維持輻射防護管制外，其餘廠址內之設施依其他除役拆除方式之作業進行，恢復土地無限制使用之條件。

根據擁有除役經驗之國家所分享之資料與文獻報告可以得知，各項除役工作的成果以及除役作業的執行技術面已相當成熟，絕大多數核能設施在除役後，均能將廠址土地恢復為無限制性使用之條件。因此，核能電廠除役在工程技術、輻射安全、環境與人員、生態保護以及應變處理方案等各方面，國際上皆有實
際之成果與經驗。

目前國內政府所頒佈的新能源政策係以「確保核安、穩健減核、打造綠能低碳環境、逐步邁向非核家園」作為總體能源發展願景與推動主軸。也因此國內的三座核能電廠未來可能傾向不再延役，而將要面臨運轉屆齡四十年而必須採取除役的方式來終止運轉執照。依照核子反應器設施管制法之規定，核子反應器設施之除役，經營者應於設施預定永久停止運轉之三年前檢附除役計畫，並向管制機關提出申請。因此，對於核能電廠之除役作業，除了經營者需要針對除役工作之執行、管理、技術研發等進行妥適的規劃之外，管制單位也應事先提升除役作業相關的專業知識與管制基礎，並培植必要的管制人力，以因應未來核能電廠面臨除役時的審查及管制工作。故在除役過程中將會面臨許多核能安全相關問題與可能遭受意外事故之挑戰，這些挑戰將是可以被預期的、透過分析評估，可提出圓滿解決問題之答案。

承上所述，依據國家能源政策規劃，台灣電力公司核一廠一、二號機將面臨運轉40年屆齡除役之先期作業規劃階段，其中，核一廠一號機組，將於民國107年底運轉到期，因此應於民國104年12月底前提出核電除役計畫。然而，國際上在核能電廠除役技術上所累積的專業技術與實務經驗並非能夠全部都套用在國內來應用；再者，國內在過去並未曾實際進行過核能電廠的除役作業，對於強化除役作業相關的專業知識與管制業務有著極為迫切的需求。因此，主管機關須以管制機關角色，為合理與嚴謹審查經營者提出之除役計畫，掌握各國核子反應器設施之除役法規、實務經驗及關鍵安全問題與評估技術，並建立
一套完善之除役計畫審查機制，藉此並能建立除役審查團隊，以期協助審查各項除役作業計畫，使除役計畫得以順利執行，於預定期程內完成除役工作。

本計畫主要將針對核能電廠除役作業安全之審查技術進行研究，在除役過程中安全分析與工作若尚未先行擬出妥善的除役規劃，進而導致在實際執行除役期間，發生輻射污染、廢棄物或放射性核種物質外釋到外界環境，廠內人員、附近居民與生態環境將會因直接暴露而造成輻射危害，這些都將是必須完全避免的情況。因此，除役之安全計畫規劃應涵蓋核能設施、組件、廠址輻射、環境、人員組織等各種情況以及假想之意外事故發生因果關係，在執行除役計畫審查時以最嚴謹態度來看待，並確保除役作業能避免並預防重大事故之發生，讓審查作業更加完備且有效率，希冀有助於未來核能電廠除役時進行各項安全分析評估等工作。

1.2 研究目的

國際之核電大國已有充足之除役拆廠經驗，其經驗與規範可供我國核能電廠除役之參考。然則因實際狀況有異以及國情不同，許多作法並不能照本宣科，必須依國內所需作進一步的修正改進，以符合國內之情況。倘若核能電廠除役前未規劃完善且嚴謹之除役計畫，隨著時間之推移，電廠內相關設施會更形老化及惡化、產生輻射或放射性物質外釋到外界環境，而造成輻射危害及於人類，及其生存之環境。因此，核能電廠除役計畫在安全分析工作方面，應涵蓋各種假想事故發生之因果關係，並建立其應變作業流程，以確保除役作業能避免並
預防重大事故之發生。除役作業安全分析之審查技術，實有必要進行深入之評估與審查，讓安全審查作業能更為完備且有效率。

此外，在除役的監管機制方面，管制面上可以採用多種分類的許可證或者由監管機構直接控制等方式來進行，視在該情況下何者最為適宜而訂定。在監控管理的範圍內，管制機關(原能會、放射性物料管理局等)應該審查並在適宜時批准所選定的除役方案、除役計畫、品質保證大綱以及其他一些與核反應爐除役相關的建議。而且，營運單位應該按照監管機制(如許可證)中的規定，按時向管制機關報告任何與安全有關的資訊，如監測資料、放射性調查。而當發生異常事件時，營運單位應該及時呈報此類事件中安全所需的數據。由是之故，在除役的所有階段中，都應該嚴格保護工作人員、公眾和環境免受除役過程所產生的危害。應該對除役期間涉及的危害進行全面的安全評估，如必要時則須包含事故分析，以確定保護措施，而此種評估方式是考慮到除役特殊問題的縱深防禦體系之一部分。因此，將應以正式的安全評估方式來確定放射危害以及非放射危害，經由此來規定恰當的防護措施，以確保工作人員和公眾的安全以及保護環境，以及相關的準則。因此，本計畫之研究工作將先藉國內外相關之研發計畫與研究報告，分析各國核能電廠除役作業安全分析之項目與評估方法，並進行除役過程中安全技術分析之深入瞭解，以強化審核者自身之能量，以應日後相關審查工作所需。
第二章 除役計畫之安全分析工作

為了因應核一廠除役所需之核安審查需求，相關之主管機關應在核能電廠實際進行除役工作前，須先建立完整之相關審查技術規範，以提升審查效率及嚴謹度，並同時增進國內核安相關審查主管機關之審查能力、專業知識與安全分析技術之瞭解。職是之故，本計畫將廣泛蒐集各國對除役時發生意外事故之處理經驗，充分瞭解各國對事故之安全評估及審核技術建立之經驗回饋，以為此計畫研究吸取安全分析專業知識之重點；並將各國對於除役時發生事故之安全作為與減抑方法，作出嚴謹審慎之比較驗證；同時考量台灣之國情與核能環境，提出最適合本土特性之審查技術與建議。本計畫之研究內容主要分為四大項，其工作項目列之如下：

2.1 蒐集彙整除役之安全相關資訊

蒐集核能大國之除役相關法規等資訊，藉以瞭解各國核能電廠除役法規對於安全評估之需求及作法，並探討國內除役法規與各國除役法規之差異。在國際具代表性的除役相關法規方面，將可參考 NRC 10 CFR 50 內對安全與意外分析作一彙整；而德國在除役、安全封存等之導則亦是可作為本國除役之參考。所蒐集之相關資料進行彙整及比對，以瞭解國際中除役對於安全分析案例及意外事故安全評估之審查差異與經驗，以進行國內核電設施除役計畫最適之審查規範與研訂。
2.2 國外電廠實際經驗案例分析

國外除役電廠之案例已有相當多之經驗與累積，雖國內核能法律是以美國為基準，但在此計畫中除了將蒐集美國相關核能電廠除役實際案例外，於其他核電大國於除役之經驗案例亦採取廣泛蒐集彙整作參考。對於除役中發生之意外事故及其應變措施，將必須針對可供參考之實例進行完整及深入之收集。此外，根據國外電廠之經驗，除役工程造成安全考量之事件多與類似於職場工安之人為疏忽與意外有關。因此，人為因素亦必須將列為研究項目之一。因而嚴謹之核安審查亦須將各種意外發生之可能、人為因素之影響納入審查規範內，亦是本計畫研究重點之一。

2.3 核能電廠除役之安全分析研究及審查規範研訂

在核能電廠及反應器設施之安全性原則考量上，有許多除役作業安全項目皆須謹慎考量與執行，如廠址與設施之輻射特性、除役期間仍需運轉之重要系統、設備及組件等，除污方式與放射性廢料處理、組織與人員訓練、意外事故等。審查人員將審查除役內容是否符合審查範圍所規定之基本要求，並決定是否足以由審查人員進行細部技術審查。當符合審查要求後，即須建立接受基準以進行除役工作之安全評估，而接受基準與審查要點將是本計畫之重要工作之一。由上述提及之各種安全分析作業中，除役期間之外事故在國外除役之研究與實際經驗可以得知，除役時發生之意外因燃料棒已移除，其主要大多數
是非關輻射而是與職災有關之公安意外。然而，除役時之公安意外往往對現場工作人員直接造成傷害，並有可能間接造成對廠外大眾及環境之輻射傷害與威脅。故針對國內首度將進行除役之核能一廠，審查管制單位必須藉由國外經驗以充實自身對於安全與意外事故之專業知識，獲得及處理方法之經驗。嚴格審核能電廠於除役時可能發生之意外事故與輻射及非輻射安全相關事件，並確實鑑定安全分析結果與確定必要之安全措施，同時須詳細審查與規範條件是否相合。

2.4 假想事故評估之重點審查

核能電廠須檢討與研議在除役期間可能發生之假想事故、評估方法及減抑之解決方法。應針對電廠於除役時所用之技術方法、時程等考量下，對於可能發生之意外事故、事故之演變、可能發生現場工作人員、大眾與環境傷害等，應提出一套完善之事故應變計畫。以廠址環境為例，核能電廠運轉期間所產生之放射核種可能於除役期間因意外或操作不慎而導致滲入地底及土壤，並藉由地下水之流動與擴散而造成大範圍之污染。因此，對於放射性污染源之特性、地下水流動方向與擴散遷移等假想事故，進行分析評估。這類的事故本研究將以 Connecticut Yankee 核能電廠之經驗作為研析案例與參考，日後可建議審查管制單位將可依據 Connecticut Yankee 核能電廠之經驗，來建立此類研析之專業能力與分析技術，以利於意外事故發生後其相關之安全分析審查。
本研究將針對除役作業的安全分析及其相關的工作與技術進行分析與研讀，將安全分析項目之類別提出準則與審查要點；同時，將針對已除役電廠之經驗，如 Yankee Rowe、Connecticut Yankee 等，作一分析與探討，並將所收集的各種資料彙整後提供物管局參考，並對除役計畫書之相關章節提出建議事項、內容涵蓋範圍及審查要點與流程，以利核能電廠除役作業之執行。
第三章 國內外除役報告與相關法規

3.1 國外除役相關法規與現況

國內核能電廠相關的設計規範與法規皆係以美國為主，在此簡述美國核管會在核子設施除役執照審查過程中與安全相關的法規需求及導則，藉以瞭解國外除役相關法規的架構及要求，以提供國內即將執行之除役項目作為一可參考的資訊平臺。美國核子設施的除役活動基本上可分為三個階段：

初期作業階段（Initial Activities Phase）

自決定永久停止運轉開始，至開始進行主要除役工作/安全貯存為止。

其間主要活動包括永久停止運轉之聲明書（Certification）、永久移空燃料之聲明書、停機後之除役作業報告書、以及除役作業報告書之公開說明會。

主要除役工作/安全貯存（Major Decommissioning / Storage Phase）

主要工作為除污、拆廠、安全貯存。其間應處理關於除役作業之人力規劃、運轉維護技術規範再評估、事故評估再分析、緊急計畫之修訂、安全防護計畫之更新、解除部份法規責任之要求、終期安全分析報告之更新、品質保證方案之更新、防火計畫之修訂、除役費用再評估、社區公共關係之建立等工作。
執照終止階段（License Termination Phase）

執照終止前尚需完成的剩餘工作。其中主要活動包括終止執照的申請作
業、執照終止計畫（LTP）的編訂、以及執照終止計畫之公開說明會。

與除役安全評估相關的要求主要規定於 10 CFR 50 中，其主要係針對生產
與使用設施執照申請的相關規定，與除役活動相關之小節分別為 50.82 及 50.59，
以下將簡述重點如下：

3.1.1 10 CFR Part 50.59

申請單位（如核電廠）在符合下列狀況時，必須經過執照的修訂，才能進行變
更或試驗：

✓ 意外事故的頻率升高。
✓ 影響安全的結構、系統或模組故障的頻率升高。
✓ 重大意外事故的發生。
✓ 影響安全的結構、系統或模組發生重大的故障。
✓ 最終安全分析報告（Final Safety Analysis Report，FSAR）以外的意外事
故發生。
✓ FSAR 以外的結構、系統或模組故障。
✓ 超過或影響分裂產物遮罩之設計基準限制（Design Basis Limit）。
✓ 違背最終安全分析報告中建立設計基準之評估方式。
3.1.2 10 CFR Part 50.82

核能電廠營運執照終止計畫(License Termination Plans, LTP)應於預計終止執照的至少兩年前提出，根據 10 CFR 50.82 之規定：LTP 應為 FSAR 之補充或相當於 FSAR 之計畫。NRC 及設施經營者應於執照終止計畫提出前，應針對計畫的內容及形式召開會議，以加速計畫的研擬及審議過程。執照終止計畫的內容應包括：

✔ 場址特性調查。

✔ 拆除活動之確認。

✔ 場址除污計畫。

✔ 最終輻射偵測計畫。

✔ 場址再利用的情形。

✔ 剩餘除役費用。

✔ 環境報告修訂。

此外，美國 NRC 制定了許多與核能發電、核能設施相關的法規規定，如除役許可、輻射防護、低放射性廢棄物的包裝、運送及處置等。過去由於美國三哩島(Three-Miles Island)事故，NRC 要求美國各電廠進行廠內事件、廠外事件及停機爐心熔損機率等研究與改善，其包含各廠檢視(Individual Plant Evaluation, IPE)及各廠廠外事件檢視(Individual Plant Evaluation of External Events, IPEEE)，進而以風險評估方式研究與計算意外導致爐心熔毀之機率。因此，進而提升美
國核能電廠之安全度與保守度，使得大部分核能電廠之設計均能有效降低發生
類似三哩島事故之機率。而美國 NRC 對於除役時用過燃料池 (Spent Fuel Pool)
及其相關系統之安全相當重視，因其認為當意外發生時其對人員、民眾及環境
會帶來相當大之影響，其包含用過燃料移除、化學污染、大型器具移除、拆除、
掩埋、運輸等。美國 NRC 認為除役期間在用過燃料池發生事件之頻率較核能電
廠正常運轉時要來得高，因此美國 NRC 建立一套適用於除役時超出 SFP 之設計
基準意外事故機率分析方法，包括：地震、飛機撞擊、龍捲風與強風、重物掉
落撞擊導致 SFP 池水流失、除汙時液體外洩、場外供電喪失等。

NRC 對其他非輻射相關意外研究表示，處理用過合成樹脂之人為疏失事故
係為場外最高輻射量之意外事件。除了 SFP 之外，除役時意外產生導致如輻射
劑量之影響與核能電廠運轉時類似，核能電廠所制定的”緊急計畫與作業”
(Emergency Plans and Procedures) 在安全防護上應以足夠。故 NRC 要求核能電廠
在發現於核能電廠除役期間異於 10CFR50.59 所列之設計基準事故 (Design Basis
Accidents, DBAs) 時，對意外事故進行分析評估並擬應變方法，進而更新核能電
廠之 FSAR。反之，與除役無關之 DBAs 將可從 FSAR 中移除。

3.1.3 IAEA 除役研究

國際原子能總署 (International Atomic Energy Agency, IAEA) 在 1980 年初即開
始進行除役相關活動，主要內容是除役計畫及除役所需技術開發的相關資訊研
究，至今亦發表了多篇關於 IAEA 安全標準系列 (IAEA Safety Standards Series)、
安全規定(Safety Requirements)等多篇文獻報告，以及於 2013 年發表之除役安全評估”Safety Assessment for Decommissioning” (IAEA Safety Report Series No. 77)。這些文件內容中提及所推動之除役及放射性廢棄物處理處置相關的主要課題，並透過各國專家的討論及國際會議上的議論，彙整成各種報告書，如 DeSa (Evaluation and Demonstration of Safety during decommissioning) 計畫。DeSa 為核能設施除役上的安全評估手法之加強與實證的計畫，加強除役安全評估上之「階層漸進式」(Graded Approach) 應用的相關報告，以及加強除役安全評估之管理當局的審查程式。這些檔或許可以用來當作我國除役規劃並制訂特別的除役規定與準則，但仍須依我國國情與現況作進一步的考慮。

此外，放射性和非放射性的危害應該被確認正式的安全評估中，這些評估亦包含了必要的意外分析，以作為適當的防護措施來確保工作人員與民衆的生命安全、環境生態的保護，而且能符合相關法規的要求。在放射性安全評估方面，燃料的移除和早期運轉廢棄物的處置，通常考慮在運轉階段的結束或是除役過程的早期，這樣可以相當減少放射性物質的量。後續之工作則是有關從反應器運轉產生的活化產物、輻射照射設備或是相對於主要/次要冷卻循環的污染、燃料運輸管道和冷卻池。除役過程中，輻射照射設備需要特別注意，因為有移除和拆卸的難度。假如燃料並沒有在運轉或是早期除役階段中移除，安全評估就要考慮到此影響。假如開始做延後拆除的打算，安全報告文件和除役計畫應該時常做檢視來確保是陳述目前設施的情形。在非放射性安全評估方面，安全評估定義一些在除役階段中重要的非放射性危害，而不是在運轉階段中常見的。
情形，舉例來說，這包括危險性物質使用在除汙、拆除和破壞工作上，還有抬起和搬運重物。大多數的非放射性危害會被規範在法規裡，但是好的安全文化將會幫助保證安全地執行作業。

在安全評估架構下，IAEA提出一套DeSa安全評估方法論來論證其應用性，如圖3-1所示為安全評估之主要步驟。在此架構下，判別認定正常除役以及潛在事故發生時產生之災變，並擬定從工程技術層面及組織管理層面之控制方法，進而預防、避免及其產生之影響，達到合理抑低(As Low As Reasonable Achievable, ALARA)之目標，以確保人員、大眾及環境的安全。以下簡述這些步驟之說明。

安全評估架構(Safety Assessment Framework)

此第一步驟設定除役中各種符合法規、安全需要之各種條件，在除役進行之任何階段皆須符合此架構。

設備與活動敘述(Description of Facility and Decommissioning Activities)

除役活動之敘述應詳細以連接至各種現有之資料檔案供進行中與預期之除役參考。
Safety assessment process

Safety assessment framework

Description of facility and decommissioning activities

Hazard identification and screening

Hazard analysis

Engineering analysis

Evaluation of results and identification of safety control measures

Compliance with requirements

Issues from independent review by the operator and regulatory review

Agreement to proceed and implementation of safety control measures

Implementation of safety assessment results

図3-1、IAEA 安全評価作業流程図
災害認定與篩選(Hazard Identification and Screening)

正常除役活動與意外發生時，各種具輻射或不具輻射，對人員、大眾及環境造成威脅之災害均需作判別認定，主要目的是辨別會造成對安全有重要影響之災害。

災害分析(Hazard Analysis)

由災害發生到結果之分析均需對核能電廠當時之狀況、事件之時間演變、實際之輻射劑量應予以考慮。此階段將初步鑑定達到安全作用所需之工程技術與組織管理方法。所使用之分析方法通常以決定法(Deterministic Methodology)進行，但依除役工作之複雜度亦可用概率法(Probabilistic Methodology)進行。

工程分析(Engoneering Analysis)

前一步驟之災害演變中安全措施所需之工程方法，在此步驟中進行詳細的判定與評估。

鑑定結果與評估(Evaluation of Results and Identification of Safety Control Measures)

安全評估須符合法規要求，並確認控制安全措施可確保危機降至可接受程度，以利除役之進行，故安全評估之結果需適當地進行更新與修改，並確保任何災害事件都不能達到危及安全的地步。此一安全措施均須獨力達成其安全作用，任一獨立安全措施應包含不確定性(Uncertainty)與靈敏度
(Sensitivity)分析，可包括多項器具與指令動作。除役安全評估步驟建議使用階梯漸進式(Graded Approach)方法，階梯漸進式之定義為：分析過程中其詳細度、複雜度、檔案紀錄、以及其他需符合法規與安全之要求將依下列因素調整：(1) 災害之強度，(2) 除役設備之特殊性質，(3) 進行中之除役過程，及(4) 在具幅設與不具幅射災害間之考量。

與規範條件吻合(Compliance with Requirements)

若安全評估之結果與安全要求或管制法規條件不合，則其步驟將如圖3-1所示進行重新修訂。其結果乃鑑定在現有之除役計畫中需增加計畫、行動、以及工程方法以確保安全措施，若除役工程需進行修改，安全評估亦需檢驗與修改以符合最新之除役現況。

獨立審查

安全評估在完成交付管制單位前，需由核能電廠做最後之審查，應確保其安全評估之輸入資料、所用假設等均符合除役時設備之現狀，而所建議之安全方法適合當前之除役作業。

以管制單位審查的立場而言，IAEA 的立場是安全評估之管制規範屬於整體除役計畫之一部分，而除役審核的範圍與指標應納入與安全相關之管理與品質。安全評估及其品質係核能電廠安全管理之指標，審查應除了結果外，均須檢視所有安全評估之項目與過程。審查之深度與作法可採用階層漸進式方法來執行，將有限之審查資源利用於迫切需要的地方。在進行審查時，應將可能之審查相
關問題藉由檢查表來列出各類項目以進行，初期審查以概括性問題為主，有關除役設備組件、災害認定與篩選、災害分析、過程與系統之敘述與判斷分析、安全管理與措施、操作條件限制、放射性廢棄物管理、電廠品質管理及獨立審核等項目應個別深入審核之。

此外，IAEA 亦提出對於核能電廠由運轉到除役間之過渡時期，主要影響安全之主要工作為下列所示：

- 處理與暫時儲藏核燃料
- 儲水系統之洩水
- 清潔與除汙
- 放射性總量估計
- 運轉時產生之廢料處理
- 除役之新電廠狀態與規劃
- 任何輻射阻擋物之移除

其中，對安全與意外事故影響最大的部分係核燃料的處理與貯存，因為核燃料是最大輻射與熱之來源，與燃料有關之意外也會對人員、大眾及環境造成相當大的威脅，進而對除役過程與場址維護造成困難。可能導致有關燃料之災害與誘發事件的意外事件如下所列：

- 重物破壞燃料
- 喪失燃料池冷卻功能
- 喪失燃料池水
喪失場內或場外電源

燃料產生臨界

其他可能產生意外並造成人員威脅之工作有清潔或除污時輻射汙染源之擴散，均值得列入意外事故之安全考量。

3.1.4 OECD/NEA 除役研究

OECD/NEA (Organisation for Economic Co-operation and Development/Nuclear Energy Agency)是以相互交換各核電大國所進行各種核能設施除役計畫所獲得的技術資訊與經驗為目的，於 1985 年 9 月簽訂為期 5 年的「核能設施除役計畫相關的科學技術資訊交換協助計畫協定」（Cooperative Program on Decommissioning: CPD）所開始的活動。其間參與交流之各國團隊於此計畫當中包含了研究用核能設施、商業用核能發電廠、因事故而提早除役的設施等各種計劃。此外，其設置了作業部會主要是為了由各國的專家進行深入討論具體的技術課題。為了除役的政策、規範、技術等相關綜合性探討目的，OECD/NEA 的放射性廢棄物管理委員會（RWMC）於 2001 年設立了除役及解體工作小組（Working Party on Decommissioning and Dismantling, WPDD），IAEA 也有參與計畫。

三項除役安全要素，安全箱(Safety Case) 之法規條款、預先評估災害以及使用科技與管理方法消除災害。而 WPDD 最主要之研究論點為安全箱之概念，其功用是階梯式之除役與拆除工作能在一個經過認可之安全箱內安全進行，進而
漸進式地消除意外災害之發生。除役之安全箱乃是一個電廠發展出之策略性工具，此工具主要是專門設計用來分析除役時可能發生的意外災害，以及消除災害之個別階段。在此安全箱內，每一項除役活動均有可驗證之安全分析與評估。除役之安全箱與運轉所需之安全箱最大不同在於，它必須隨時保持更新狀態，例如考慮到除役活動進行與核能電廠現狀、以及管理階層之改變與發展等因素。

建構安全箱之第一步驟為將意外災害與其相關之設備特徵化（Characterization），其中包括收集在除役時各種可能發生之災變情況，分析各種設備之結構及其對人員安全與保護之影響，以及事故產生所導致之輻射劑量、分佈與性質。

建構安全箱之第二步驟為收集資料與災害分析，收集之資料包括：對每一個情況所產生之安全挑戰、消除或降低潛在災害危害之技術、驗證災害消弭之方法、以及預期產生之廢料與輻射劑量。其中所使用之災害分類、嚴重性排列、以及篩選等步驟均與美國能源署(Department of Energy, DOE)之研究類似。其他包含在安全箱之內容包括技術、管理及組織之調整。而一個完備可供意外發生時使用之安全箱，取決於電廠平時之安全文化與周詳之管理才能達成，例如電廠平時之 EH&S(Environment Health & Safety)執行與管理。

3.2 國內除役現況與法規要求

國內核能電廠依四十年運轉期限辦理除役，首先面臨的是民國 107 年須停
依「核子反應器設施管制法」第二十三條第二項之規定，經營者應於核子反應器設施預定永久停止運轉之三年前提出除役計畫，亦即應於民國 104 年提出核一廠之除役計畫。原能會為因應未來核能設施除役之管制作業需要，已訂定相關管制法規，供業者依循。而在建立核能設施除役作業之管制技術能力，核能研究所近年來藉由其舊有之台視研究用反應器除役工作所累積之相關經驗，累積對核子設施除役作業的能力，其中包括核子設施除汙、拆除、污染檢測與廠址復原等技術，並多次派員參與歐盟經濟合作開發組織核能署 (OECD/NEA) 所邀集之相關核子設施拆除作業國際性合作研究計畫，以期引進更先進之技術，提升本土除役之技術能力。為管理核能設施除役，增進廠址土地資源之安全利用，原能會於民國 92 年 1 月頒佈「核子反應器設施管制法」對停役及除役之要求如下：

核能電廠及其設施之除役，經營者 (核能電廠) 應檢附除役計畫，向主管機關提出申請，經審核合於下列規定，發給除役許可後，始得為之，對於放射性汙染之設備、結構及物質應採取拆除之方式，並在主管機關規定之 25 年期限內完成。核能電廠及其設施之除役，拆除後之廠址輻射劑量，必須符合審查人員與管制單位所制定之標準與規範。拆除或移出之放射性污染設備、結構或物質，應貯存於主管機關核准之設施，如低放射性廢棄物處置場或用過核燃料中期貯存設施內。除役後之廠址，其輻射劑量應符合下列標準：

- 限制性使用者，其對一般人造成之年有效等效劑量不得超過 1 毫西弗。
- 非限制性使用者，其對一般人造成之年有效等效劑量不得超過 0.25 毫
西弗。

- 令廠址土地復原至可供一般性開發再利用。

若核能電廠及其設施於運轉執照有效期間內，因故不繼續運轉時，經營者應於永久停止運轉後三年內提出除役計畫送審，經原能會審查合於規定，發給除役許可後，才可進行。由於除役工作涵蓋範圍廣闊，且作業將持續數十年時間，因此除役時必須考慮的安全問題如下所示：

（1）在核能設施除役的過程中，工作人員是否會因長期暴露在高輻射環境中而其健康受到深度的影響？

（2）除役後廠址解除管制，開放供附近居民使用時，廠址範圍所造成的輻射劑量是否會對附近居民健康造成不利之影響？

（3）低放射性廢棄物運送及貯存的安全問題是否有詳加考量？

（4）用過燃料若繼續暫存廠內用過燃料池，其週邊設施的安全是否有詳加考量？

（5）核能設施除役成本與社會的問題：

（6）使用的除役技術和方法與作業持續的時間。

（7）依輻射安全和環境要求下，管制法規標準的嚴格程度。

（8）用過燃料與低放射性廢棄物的數量，廢棄物暫存與最終處置的費用（含場址取得、設計、地質條件與儲存措施等影響成本之因素）。

（9）核能設施除役的社會問題，如居民恐慌、抗爭與失業問題，及國家核能政策等不確定性因素。
第四章 國際間除役情況與實際案例

4.1 國際核能電廠除役概況

美國、德國與日本等核電使用大國皆具有相當豐富的除役相關經驗，在其除役計畫和除役結果報告中均存有十分寶貴之資料與實作紀錄，可供我國核能電廠進行除役作業時之參考。雖然各國電廠之設計與環境條件不同，除役計畫亦須依各國國情做調整，其並無法一體適用，且需針對各電廠進行審慎評估與檢討，才能擬定最適用於各電廠之除役計畫。美國核能電廠之除役經驗具有相當程度之參考價值，且我國核能電廠係以美規為主，各類的規範與法規大多皆以美國核能電廠為導向，不過其他國家的除役經驗與相關重要資訊對於尚未有過除役經驗的我國而言，皆是重要的參考依據。故本計畫主要方法便是由已完成除役之核能電廠及其除役過程中與安全評估相關的工作進行探討，作為未來主管機關審査核能機組除役計畫之依據。

4.1.1 美國概況

目前美國已有 32 座核能電廠(含小型發電用反應器)永久停止運轉以及部分已除役完成，其中 13 座處於安全貯存(SAFSTOR)中。以法令的原則而言，其僅規定核能電廠應於 60 年內完成除役，故除役的方式基本上以「立即拆除(DECON)」與「安全貯存(SAFSTOR)」2 種方法為主流，其需要執行的年限分別為 5~10 年以及 30~50 年。從經濟的觀點來看，立即拆除方式較為符合效益，
但亦有核能電廠考量到用過核燃料及放射性廢棄物的貯存地點、處置場尚未完備，而選用安全貯存方式。

以 Big Rock Point 核能發電廠 (BRP) 為例，其為沸水式反應器 (Boiled Water Reactor, BWR) 型，其設置在密西根州的 Charlevoix 並於 1962 年 8 月 29 日由美國 NRC 取得運轉執照，初次臨界達成於同年 9 月 27 日，而 1963 年開始進行商業運轉。根據國際原子能總署 (International Atomic Energy Agency, IAEA) 的 Power Reactor Information System (PRIS) 登錄值，其電力輸出為 71 MWe。而 BRP 的運轉執照期限為 2000 年 5 月 31 日即到期，且不再進行延役使用，然而該發電廠提前於 1997 年 8 月 29 日永久停止使用。其理由為：電力輸出降低以及運轉經費過高。

Rock Point Reactor Vessel Package Safety Analysis Report，其主要是分析计算与探讨反应炉传输系统(Reactor Vessel Transport System, RVTS)的结构评估，其计算结果证实 RVTS 的护箱可以符合 10 CFR 71.35 规范的需求，且关于结构分析，应力破坏等地评估分析结果，亦遵从了 Regulatory Guide 7.6、7.8、7.11 的要求。

(a) 除役前之厂址 (b) 除役后之空照图

图 4-1、Big Rock Point 核能电厂

设置在麻萨诸塞州的 Rowe 核能电厂，其反应器为压水式(Pressurized Water Reactor, PWR)，1960 年初达到临界，1961 年开始进行商用运转。最高设计热输出为 485 MWt，之后于 1963 年增加输出为 600 MWt。1992 年 2 月，停止 31 年间的商业运转，开始除役活动。

2006 年 9 月，设施的解体拆除完成，解体废棄物的发送也于 9 月完成。剩余的主要作業是建造用過核燃料独立貯存設施，以作為貯存長期用過核子燃料以及運轉管理之用。最終狀態輻射偵検（Final Status Survey, FSS）活動於 2006 年 9 月完成，並在 2006 年 12 月提出 FSS 報告書(Final Status Survey Report, FSSR)。
NRC 許可終結計畫在 2007 年夏天實施，並於 2008 年在 NRC 的網站上揭示管理解除。另外，約 1 英畝（約 4,050 m²）的 ISFSI 腹地，則保留在 NRC 許可之下。圖 4-2~4-4 分別顯示了 Yankee Rowe 除役前、ISFSI、除役後的狀況照片。

圖 4-2、Yankee Rowe 核能電廠除役前的狀況

圖 4-3、Yankee Rowe 核能電廠的 ISFSI
圖 4-4、Yankee Rowe 核能電廠廠址開放後的狀況

4.1.2 德國概況

目前德國有 19 座核能電廠及原型反應器永久停止運轉，德國的除役措施是由業者決定其執行策略，州政府等管制單位則負責審查業者所提出的除役計畫內容，當業者的提案符合審查基準時，即予以除役許可。Lingen 核能電廠與 THTR 反應器是採用安全貯存後拆除方式，其餘的 11 座核能電廠則考量到社會經濟層面之影響，並為有效利用電廠專業人員的情況下，選擇了立即拆除方式。

4.1.2.1 Rheinsberg 核能發電廠

4.1.2.2 Obrigheim 核能發電廠

Obrigheim 核能發電廠（Kernkraftwerk Obrigheim, KWO）是一座輸出功率
為 357 MWe PWR 電廠，於 1968 年開始運轉，並於 2005 年 5 月 11 日停止發電，並擬定核能電廠的除役及解體計畫開始進行準備。KWO 選擇的除役策略是早期解體，並計劃分成 3 個階段，持續進行至 2020 年止。除役策略會因各種不同的廠址固定主因而有所影響，其中，用過核子燃料束的貯存是最重要的原因之一。現今貯存於廠址中可利用之濕式燃料貯存設施的燃料，已被移往相同廠址中進行建造的乾式貯存設施。

4.1.2.3 Würgassen 核能發電廠

Würgassen 核能發電廠（Kernkraftwerk Würgassen, KKW）是座 BWR 電廠，其於 1971 年開始運轉。然而，在 1994 年進行維護作業時發現爐心出現龜裂，因此在 1995 年 5 月底決定除役。其除役的策略採用直接除役，並分成 6 個階段，每個階段皆需獲得許可。這種階段性的執行方法，是縮短最初的許可通過前所需的時間，同時實施已經獲得許可的階段，再進行下一階段的準備，藉以讓之後的手續最佳化，其除役相關作業已於 2014 年完成。

此外，德國 Niederaichbach 電廠係為單一機組之重水式反應爐，其發電功率為 100 MWe，其於 1995 年完成除役，且廠址已做為一般農業用途。

4.1.3 日本概況

普賢核能發電廠（Fugen Nuclear Power Station）是以重水減速沸水式壓力管型的自主開發動力爐，利用鈾鈽混合氧化物（Mixed Oxide Fuel, MOX）燃料作
為發電用熱中子反應器，於 1979 年 3 月 20 日開始正式運轉，其在 2003 年 3 月 29 日結束運轉。為了讓停止運轉後的除役工作能順利進行，普賢電廠於 2002 年 3 月 20 日彙整「先進高溫反應器普賢發電廠運轉結束後的事業發展方法」，並根據其方法開始進行除役的準備及技術開發。在 2006 年 11 月 7 日提出除役計畫的認可申請，並於 2008 年 2 月 12 日獲得認可。整個除役工程，根據除役計畫實施除役，預定於 2028 年度前完成。

從普賢電廠在設施的解體方法來看，根據用過核子燃料的貯存、除役工程相關經驗與實績的累積、為降低曝露，考量輻射衰減的解體時間等，其將除役期間分成 4 個階段依序實施：

(a) **用過核子燃料搬出期間**

在運出用過燃料及重水的同時，亦應維持用過燃料的相關貯存安全確保措施，在不影響其機能的範圍內，將已使用完且輻射等級較低或無污染的設施、設備等進行解體拆除。

(b) **反應器區域設備解體拆除期間**

拆除反應器用的遠端遙控裝置設置範圍內，對該設備運作造成障礙的機器、設備等，應在此階段予以拆除。

(c) **反應器本體解體拆除期間**

考量需減少放射性工作從業人員的總曝露劑量，應等於或小於在定期檢
查時的運轉中核子反應器的曝露劑量。並且活用上述 (1) 、(2) 期間所累積下来的除役工程相關數據資料、經驗與實際成果，進行較高放射性核子反應器區域的解體拆除工作。另外，等拆除完所有污染機器設備，以及完成各廠房和建物結構的除汙作業後，將會依次解除所有的管制區域。

(d) 建築解體期間

進行除役對象設施的解體，包含管制區域內的建築及未受污染的建築在內。

上述 4 點於安全考量上包含除汙方式的處理、人員訓練、輻射劑量評估以及意外事件安全分析等，因此藉由普賢電廠除役的方式與經驗，可提供我國進行安全分析相當重要的資訊。

4.2 國外電廠實際經驗案例

國外除役電廠之案例已累積相當多，然而對於除役中發生之意外事故及其應變措施，因屬各別電廠之不公開資料，所以可供參考之實例並不多，其中美國 YAEC (YANKEE Atomic Electric Company) 所運轉之 Yankee Rowe 核能電廠，與 EPRI 合作除役工程進行，並發表完整之除役經驗分享，以下將概述除役意外安全事故發生與處理方面。
4.2.1 Oyster Creek 核能電廠

Oyster Creek 核能電廠從 1969 年開始商轉，僅有單一機組且僅能產生 620 MWe 之沸水式反應器，其原本 40 年的運轉執照於 2009 年到期，Exelon 於 2005 年申請延役 20 年，2009 年 4 月 8 日獲准延役至 2029 年 4 月 9 日。然而，在獲准延役後的一週，工作人員發現由於 1991 年埋管時未適當地隔絕，導致氚外洩，並污染地下水及進入河川中。2010 年 12 月，Exelon 宣佈將於 2019 年停止運轉，比預計的延役時間早 10 年。而影響除役的另一重要因素是用過核子燃料儲存池 (Spent Fuel Storage Pool, SFSP) 的設計基礎，因 Oyster Creek 電廠的 SFSP 設計基礎在業界是獨一無二的，原 SFSP 之設計基礎並無考慮沸騰或其他不正常事件時，能安全無虞；故除役計畫須重新考慮 SFSP 之冷卻系統設計，以確保長期除役使用。

在安全考量上，Oyster Creek 核能電廠亦將鋯合金火災情境也考量。在燃料已永久移除下，廠址內已無甚大的風險，其在燃料移除安全分析報告內對場外的最大計算輻射劑量已遠低於 10 CFR 50, Part 100 及美國環境保護局的 Protective Action Guidelines (PAGs) 的規定，而且預估並無超越 DBAs 會發生。然而，美國 NRC 有要求各核能電廠須對廠址用過核子燃料之鋯合金燃料鍍層，在燃料池流失所有冷卻水時作過熱及發生火災的分析。

Oyster Creek 使用 SHARP Code 來評估鋯合金之火災分析，此套軟體由 The Brookhaven National Laboratory 所研發，並已由 NRC 採用來作為鋯合金火災之
可能性。其分析結果顯示，若燃料池喪失所有冷卻水後，其最短的時間為 2-4
月會發生火災。在 1999 年時 NRC 成立一 Technical Working Group (TWG)，並
在委員會的指導下，對除役電廠做鋯合金/燃料池之火災分析，並將之列為緊急
計畫、安全警示、保險需求之一環。

4.2.2 Yankee Rowe 核能電廠

壓水式反應器之 Yankee Rowe 在除役第一年發生 15 件與職安(OSHA)有關
之人員受傷意外，其中有 9 件屬於喪失工作時間意外 (LTA, Lost Time Accidents)，
因此 YAEC 啟動自我評估機制，以了解意外產生原因並預防再度發生，至此之
後 Yankee Rowe 就無任何 LTA 發生。YAEC 發現手部受傷是最常發生，發生主
要原因為過度操勞，與 OSHA 有關之受傷主要是背傷。在除役安全方面，YAEC
在下列幾項機制中實行：

(a) 建構安全法則

基於除役工程屬於”破壞性”性質，電廠之安全手冊以及一些特殊程式必須
修改。在除役初期就訓練一批管理人員以熟悉 OSHA 標準，並安排重要人
員參加 OSHA 相關之課程，以監督除役工程之安全進行。

(b) 人員調整

安排現場安全專業人員監督工程之進行，每一進行之工程都有二至八位
安全管理人員協助，尤其是對包商的監督，每一位安全管理人員均有基本之
協助人員，包括一至二位的工安技師，一位行政助理，一位部門經理，以及一位職衛護士。

(c) 安全訓練

YAEC 開設一系列的瞭解職災之交流課程，此類課程亦包括於提供包商瞭解電廠之訓練課程內。每週舉辦安全工具箱會議”(Toolbox Safety Meeting) 並要求所有現場工作人員參加。除役進行中非關輻射線之意外訓練課程遠多於與輻射相關之意外訓練課程。

(d) 工作簡報

YAEC 運用三種工作簡報支援除役安全工作：事前簡報、每日簡報、及事後簡報。事前簡報包括：審查工作性質、地點、與時程，指出電源供給狀況與工作需求，瞭解有關工作之書面記錄與報告，討論除汙進行方法，宣佈工作需求與防範措施，審查工作有關之意外以及其所需之安全控管，規劃儲存產生廢料之地點，審查放射線安全控管。每日簡報包括：當日之工作執行狀況，解決前一日發生之問題，輪班工作之瞭解與交接，審查當日工作可能發生之意外及安全防護。事後簡報包括：工作時程、ALARA、安全、獲得之教訓、工作環境控管、工程進行之控管、工具、材料等之總結。

(e) 傷害管理

傷害管理包括：事前損失準備、立即反應與急救、事件評估、討論獲得
之教訓、返回工作等事項。確保每一件意外事故均提報，以及受傷之人員不
被排斥，並充分討論獲得之教訓以防止事故再發生。

(f) 工作意外評估及實際工程控制

意外事故分析主要目的是判別及衡量意外事故之程度，以達到消除或控
制其影響至最低。除役工作進行時，意外事故分析主要是由執行工程之團隊
進行現場繞行動作，以瞭解現場進行除役工程時潛在之意外。工作意外評估
是安全評估的另一層次評估工作，其關注焦點為特定之工作與其相關之意外
事故與管控以減低傷害，並於每日工作簡報中討論，以提醒人員注意依些細
節問題。此部分需要書面安全意外事故評估，以及建立一個簡單之查核表。

(g) 非關輻射線之特殊物質管控

例如石棉、PCB (polychlorinated biphenyl)、鉛、含毒油漆、焊接與切割
時產生之金屬微物、噴漆、絕熱、侷限空間之進出、矽化物等。

4.2.3 Connecticut Yankee 核能電廠

Connecticut Yankee 核能電廠是一個單一反應器的設施，電廠坐落在 Haddam
鎮佔地 525 英畝的土地上，並安置了額定功率 1825 MWt 和 619 MWe 的壓水式
反應器。其於 1967 年 7 月 24 日達到初步臨界，1968 年 1 月 1 日起商業運轉，
約運轉 28 年後在 1996 年 12 月 4 日永久停止運轉。1996 年 12 月 5 日 CYAPCO
通知核監督管理委員會（NRC）HNP 永久停止運轉和從反應器壓力容器中永久
移除所有燃料並將其放置在用過核子燃料池中。停止運轉之後，CYAPCO 開始 HNP 除役。按照法規 10CFR50.82 (a) (4) 規定在 1997 年 8 月 22 日提交停機後除役作業報告 (PSDAR) (其後修訂於 2002 年 10 月 22 日)，1998 年 1 月 26 日，NRC 接受 PSDAR，後來 CYAPCO 又提交了一份更新的最終安全分析報告，以反映核能電廠的永久停止運轉狀態，NRC 於 1998 年 6 月 30 日修訂 HNP 設施的營運執照以反映電廠永久停止運轉狀態。1999 年 10 月 19 日修訂營運執照以反映用過核子燃料長期儲存在用過核子燃料池及電廠的除役狀態。額外的執照基本文件也進行修訂及遞交以反映在用過核子燃料池內的長期燃料貯存，如移除燃料緊急計劃、安全計劃、品質保證計劃、及操作人員培訓計劃。
Connecticut Yankee 核能電廠運轉期間的廠址

在保健物理改進計劃方面，由於在電廠永久停止運轉後不久，發生兩名工人吸入空氣中輻射污染物的事件，因此美國 NRC 將 CY 劃歸在驗證行動通知書（Confirmatory Action Letter）的規範之下。由於吸入空氣中污染物，工人收到了顯著的體內暴露，雖然不是過量暴露，但對於工人受到的暴露和 CY 缺乏保健物理人員以及輻射工作人員的做法，受到 NRC 極大的關注。這驗證行動通知書限制 CY 執行具有挑戰性的放射性工作，直到 CY 完成保健物理計劃中某些令 NRC 滿意的改進為止。一旦 CAL 被解除，CY 可以進行重大的除役活動，CAL 於 1997 年 5 月 4 日由 NRC 簽發並於 14 個月後解除。這種限制導致除役活動的延遲。在此期間，對保健物理程式和做法進行完整的審查和更新。

此外，CY 廠址關閉時，廠址發現有地下水核種污染的情形，再加上 CY 電廠旁有康乃狄克河，此地勢情況與核一廠旁銜接乾華溪頗為類似，因此 CY 在地下水整治與規畫執行上，對於國內核電廠會有相當大的參考價值。CY 在地下水整治的建議上，提及下列幾點：

- 在電廠運轉過程應進行地下水污染的特性調查，評估是否應採取措施，以減少設施的洩漏和溢出的影響。

- 在電廠運轉過程應進行地下水污染的特性調查，評估是否應採取措施，以減少設施的洩漏和溢出的影響。

- 設施洩漏和廢棄物運輸處理及地下水污染的整治，這些處置的成本高達 35 百萬美元，因地下水污染衍生額外土壤的整治成本超過 15 百萬美元。
而當 CY 在廠區被懷疑是地下水污染的地區確定後，CY 即起動地下水監控計畫，在懷疑的地區設置監測井，監測井分佈於電廠的 3 個地區:

(1) 電廠的反應器圍阻體和主要輔助建築物。

(2) 半島地區(位於排放運河和康乃狄克河之間)。

(3) 填埋區(landfill area)。

取地下水樣本進行分析氚(Tritium)、γ 放射性同位素、總 α 及總 β 濃度，結果發現氚滲透移動速度最快，圖 4-6 顯示在電廠工業區的水井位置，圖中可發現黃色與藍色部分為反應爐槽與氣渦輪機，其附近地面被輻射水滲入的比例較高。
圖 4-6 2003年12月Connecticut Yankee電廠地下水監測狀態

圖4-7顯示了在大規模的土壤整治前的氚趨勢。由此可以看出，在最初的幾個採樣週期氚迅速下降。到2000年1月，大多數監測井的氚已下降到接近或低於EPA MCL（EPA Maximum Contaminant Levels MCL）（已知為飲用水標準）濃度值20000 PCI/L（740 貝克/升）。

最初特性資料收集之後，CY水文地質監測計劃第2階段制定了更為詳盡的地下水監測計劃，並提出20種放射性核種的清單。2001年6月開始進行地下水取樣分析，確認這些放射性核種是否存在於地下水中，取樣分析的結果顯示在某些監測井及桶槽區的通過水壓向下坡度(hydraulically downgradient)的區域內，放射性核種鈾-90(Sr-90)濃度較大，其分析結果顯示Sr-90地下水濃度的增高是與
地下水位高度息息相關的。由於冬天所積蓄的雪在春季時期融化，將使得地下水位上升，污染的土壤與地下水接觸會造成 Sr-90 進入地下水中，進而導致 Sr-90 從土壤中溶出。溶出的 Sr-90 通過地下水的流動移動到監測井，在受污染的土壤監測井的向下坡度區域的取樣中被檢測出來。水井抽樣結果的 Sr-90 在整治之前的最高濃度位於圖 4-8 所示，圖 4-9 表示為地下水位以下的土壤/基岩整治區。

圖 Connecticut Yankee 電廠 4-8 整治前鈾 90 趨勢
圖 4-9 Connecticut Yankee 電廠地下水位以下的土壤/基岩整治區

主要輔助建築物(PAB)開挖調查發現，在西側處有地下水滲漏。雖然這地下水濃度遠低於 MCL，但滲漏出的 Sr-90 的濃度趨勢顯示有另外的污染源將污染物滲漏到開挖區。由區域採樣檢測的資料，確定需要整治的地區，並根據預測的地下水濃度值進行土壤整治。

由圖 4-6 可以得知，反應爐槽及其附近輻射水滲入的比例較高，且土壤部分也是檢測重點，故為了證明這一理論，先由反應爐槽以及地質傾斜區開始採樣，約有 200 個地點設置監測器，總共約 1000 個樣本數。電廠其他地區的土壤也一同進行分析，而某些建築物下的土壤取樣困難，則是使用鑽孔機將地板鑽穿取樣。調查的結果，放射性核種濃度最高的地方是在桶槽區下方，在桶
槽區下方的土壤中，不只鈾 90 的濃度高，其他最關注的放射性核種的濃度也是很顯著的。最高濃度的 SR-90 污染的地點是在地下水中發現，而在這個地點上方土壤中的 SR-90 濃度明顯低於那些在桶槽區土壤中的 SR-90 濃度。因此，為了符合 CY 執照中止計畫 (License Termination Plan, LTP) 的承諾，當地下水污染源整治之後需要實施地下水監測，而在進行監測之前則必須先消除污染源，進行土壤整治以符合美國康乃狄克州整治標準法規 (State of Connecticut Remediation Standard Regulations, RSRs)，其是適用的外釋標準法規，若外圍土壤超過 DCGLs 或地下水的篩選標準，基本上這些土壤都要移除，以確保地下水不受岩床裂縫中的放射性影響。故移除的部分則需要以新的土壤作回填，以達到整治法規的標準。整個整治作業所移除的土壤總量是 1.17 百萬立方英尺（約為 33,000 立方公尺），這些土壤被視為放射性廢棄物處理。由於設施的洩漏和溢出，造成地下水污染到 CY 工業區的其他地區，其要滿足場址外釋的 MCLs，需要額外移除的部分土壤總量是 412,000 立方英尺（約為 11,700 立方米）。

2005 年 12 月建立地下水監測計劃並發送至 NRC 審查，在這個月進行第一輪的 LTP 抽樣調查。若以下的項目達成時，即表示符合 LTP 的承諾：

- 至少每季進行取樣至少 18 個月以上，
- 監測期間需要包括兩個春季的高水位期，
- 抽樣結果必須是趨勢向下或穩定的，
- 抽樣結果的最高劑量，必須 ≤ CY LTP 所允許的劑量。
在完成上述簡述之影響地下水重大整治之後，這些取樣已進行了 6 個月，自 2005 年 12 月起地下水的最高濃度已呈下降趨勢。最高濃度低於 MCLS 也遠低於地下水的劑量目標 2 mrem/年（0.02 毫希/年）。圖 4-10 和圖 4-11 是包括整治後抽樣結果的氚和 Sr-90 的趨勢圖。

因此，以廠址特性與安全分析而言，此地下水整治的案例係可做為我國除役時期安全分析的借鏡與重要參考依據。

圖 4-10 Connecticut Yankee 電廠包括後期整治成果的氚趨勢
圖 4-11 Connecticut Yankee 電廠包括後期整治成果的鍶-90 趨勢
第五章 除役安全審查要點與評估

成功的除役取決於仔細編制一個妥善的計畫，每個核反應器及設施其除役計畫的範圍、內容和所要求的詳細程度，不同國家會有所差異，其係取決於該核設施的複雜性和潛在危害，且應與國家的規範一致。安全評估應是一完整除役計畫中必不可少的一部分，營運單位負責作出安全評估，並將其遞交給管制單位進行審查。而安全評估應該與該設施的複雜性和潛在危害息息相關，若是在暫緩除役的情況下，則應該考慮該設施直到最終拆卸整個期間的安全。對於核能電廠除役的安全評估方面，在所有的除役階段，應該保護工作人員、民眾和環境避免受到與除役過程有關的危害。應該在正式的安全評估中找出所提出的除役活動中涉及的放射危害和非放射危害，以此確定防護措施，並確保工作人員、民眾和環境的安全，而這些防護措施可能要求改變現行運作設施已建立的安全系統，但這類改變應在安全評估中明確證明是可接受的。因此，安全評估及審查上應該要鑑別在除役所有階段確保持續安全所必需的行動。這樣的安全相關行動可能是工程或行政管理上安排的保護措施，而它將可提供所確定且必需的縱深防禦。

在審查要點上，針對安全分析評估可以對欲除役電廠提出說明要求，如下所示為部分重要的考量點，並為本計畫於審查準則上建立基礎：

（1）說明除汙準則、除汙程式、除汙技術、作業場所、作業安全及輻射
防護措施等。

（2）除汙作業應在安全的前提下採行有效的方法與技術，並配合管理措施與輻防設備，以符合「遊離輻射防護安全標準」的規定，以限制輻射工作人員職業輻射劑量限度之規定。

（3）除汙程式宜有流程圖加以說明。

（4）相關作業包含除役工程規劃、設施系統、設備、組件與材料之放射性活度調查方法、設施除汙、拆除切割、廢棄物處理與運貯、輻射防護、環境偵測、工程支援、品質保證等，應由專業技術人員負責規劃執行，其資格要求應明確列出。

（5）必須詳實說明除役活動中，移除燃料、系統拆除作業與各階段放射性廢棄物處理、運送、處置之劑量評估方式與輻射安全評估結果。

（6）申請者必須依照各階段核子反應器設施廠房結構及各重要系統、設備、組件等的拆除工法與時序，提供拆除作業進行中，各階段的作業人員輻射劑量評估方式。

在安全評估上亦可如下所示為簡要提出部分重要的考量點：

（1）申請者提出之資料是否詳實完整。

（2）除汙方式規劃是否合理可行。

（3）放射性廢氣與廢液是否提出可行的處理、排放及貯存方法。

（4）除汙作業及廢氣與廢液處理，是否能確保公眾健康與作業安全。

（5）評估申請者的計畫是否遵循 10 CFR parts 19 與 20 的指引準則，並
且可於除役活動期間保護工作人員免於遊離輻射傷害。

評估申請者對於工作人員輻射安全之量測，是否符合 10 CFR 20.1101
對於輻射防護計畫之要求。

如下所列的項目為相關之審查要點以及安全分析評估，並做一簡述。

(1) 廠址與設施之輻射特性調查及評估結果
(2) 除役期間仍須運轉之重要系統、設備、組件及其運轉方式
(3) 除役時程、使用之設備、方法及安全作業程式
(4) 除役期間預期之意外事件安全分析
(5) 輻射劑量評估及輻射防護措施
(6) 品質保證方案

5.1 廠址與設施之輻射特性調查

審查人員與管制單位須審查核能電廠除役計畫內容是否符合審查範圍
所規定之基本要求，如申請單位須提供廠址目前的輻射狀態說明，審查人
員需審查申請單位是否對所調查的結果說明其相關設施、建築物、系統及
設備與廠址環境、地下的土壤以及地表水與地下水是否有放射性污染的情
況。

審查的基準與審查要點，則須符合以下要求：

(1) 申請單位必須完整說明輻射特性調查範圍的規劃，包括建築結構、
系統、設備與重要組件等及廠址環境，如土壤、地表水與地下水等。

(2) 調查範圍須評估曾經污染、仍有污染、或有潛在污染之廠區設施範圍，應至少包括廠區建築結構、系統、組件、殘留物、土壤、地表與地下水。

(3) 申請單位須詳細說明調查項目，如廠區建築結構、系統、組件、殘留物、土壤、地表與地下水的資訊，採用何種評估方法，如廠址歷史評估、污染活度偵測、中子活化評估、輻射劑量推估等。

(4) 說明所有輻射洩漏、處置、操作作業或其他發生輻射意外事故之完整緣由，以及設施內外可能導致污染的位置。

(5) 審查必須詳實說明廠區環境、土壤、地表水與地下水等及設施如建築結構、系統、設備與重要組件等污染或活化之程度及範圍的評估分析結果。

(6) 廠址輻射特性評估方面，應包含量測調查結果之描述與評估、残留核種濃度量測結果之統計圖表、廠區、建築之圖件，以及說明顯示分類判定與判定之考量。

(7) 土壤污染方面，應包含說明含有超出輻射背景值殘留輻射物質之表面與次表面土壤位置，以及地圖以顯示表面與次表面污染土壤之位置。

在安全評估上，審查人員與管制單位將確認申請單位已彙整廠址內的建築物、設備、土壤及地下水的輻射狀態，並將審查申請單位所提供的資訊是否足夠與正確來進行評估。
5.2 除役期間仍須運轉之重要系統

審查人員與管制單位將會審查在除役期間仍須運轉之重要系統、設備、組件及其運轉方式，申請單位須提供除役計畫中廠房設施之結構、系統與組件 (Structure, System and Components, SSCs) 安全分析相關檔；除役各階段仍須運轉及需要修改或新設之安全與非安全相關重要系統、設備、組件與其運轉方式。而審查的基準與審查要點，則須符合以下要求：

(1) 說明各除役階段廠區設施維持安全運作之分析結果，以防止放射性污染擴散並確保用過核子燃料之安全貯存。每一個階段完成後之分析結果，須確保廠區核能或輻射安全顧慮不得高於前一個除役階段。

(2) 除役階段中仍需維持運轉之安全相關系統或組件，需進行整體安全評估，確保相關之結構、系統與組件 (SSCs) 正常運轉之安全性。

(3) 當燃料永久移出核子反應器，核能電廠即進入除役狀態，相關結構、系統與組件 (SSCs) 之安全分類原則與分類結果，必須在除役計畫中重新定義與說明。

(4) 申請單位必須詳實說明除役期間仍須運轉及需要修改或新設之安全相關重要系統、設備、組件與其運轉方式。

(5) 申請單位必須說明除役階段所使用的重大設備或系統 (固定或非固定) 之監視與維護計畫，以確保除役階段的系統正常安全運轉。

(6) 對維持運轉之安全相關系統之運轉規範與終期安全分析報告的修改，需建議修改的原則。
（7）除役各階段可停止運轉之系統，其斷電、洩水與隔離作業方法，以及系統減免管制規定，必須在計畫中提出規劃，以不影響必須運轉系統之正常運作為原則。

在安全評估上，審查人員與管制單位將確認申請單位已詳實提供各除役階段維持廠區設施安全運作之分析結果。審查人員將會審查申請單位是否充分瞭解需維持運轉的系統及停止運轉的系統，以供安全相關系統之評估；同時申請單位亦須對需維持運轉之非安全相關系統的運轉說明，以作為除役期間仍須運轉之重要系統、設備、組件及其運轉方式之安全評估。

5.3 除役時程、使用之設備、方法及安全作業程式

審查人員與管制單位將會審查除役各階段之目標及時程之文件；放射性污染之機械系統、設備、重要組件及廠房結構的拆除方法及其使用之設備之說明；各階段核子反應器設施廠房結構及各重要系統、設備、組件等的拆除工法與時序之說明；拆除作業中安全作業程式及其相關之輻射防護與防治污染擴散的設計之說明。而審查的基準與審查要點，則須符合以下要求：

（1）申請單位必須詳實說明除役各階段目標及時程，以及預計完成時間。

（2）申請單位在規劃除役各階段之時程須說明規劃之依據，並應說明在廠址輻射特性調查結果及考量各項除汙預期效果下的拆除程式與時程規劃依據。
（3）申請單位在規劃除役各階段之時程，亦須說明考量國內用過核子燃料及放射性廢棄物處理、貯存或最終處置計畫的綜合規劃結果。

（4）拆除作業方面，申請單位必須詳實說明各階段核子反應器設施廠房結構及各重要系統、設備、組件等的拆除工法與時序。

（5）申請單位必須詳實說明具活化效應之機械系統、設備、重要組件與廠房結構的拆除方法及其使用之設備，以及拆除作業中安全作業程式及其相關之輻射防護與防治污染擴散的設計。

（6）須明確說明包含對不同材質之不同結構、系統、設備之拆除方法及使用之設備。

（7）採用機械切割方法須確保拆除作業中的安全，如應說明電氣安全、空浮污染議題及其防範規劃，另亦需說明二次廢棄物產生及收集方式。

（8）採用各種切割方法應說明其設計理念，及如何達成減廢之目標。

在安全評估上，審查人員與管制單位將須核査關於除役各階段之目標及時程。審查人員將會審查申請單位是否充分瞭解各階段核子反應器設施廠房結構及各重要系統、設備、組件等的拆除工法與時序，以供除役時程之評估；同時申請者亦須對拆除方法及程式進行說明，以作為除役時程、使用之設備、方法及安全作業程式之安全評估。

5.4 除役期間預期之意外事件安全分析

審查人員與管制單位須審查核能設施除役期間可能發生之意外事件：
各項意外事件的發生原因、評估方法、後果管理及其影響分析；評估除役期間可能發生之假想事故之相關檔等說明。而審查的基準與審查要點，則須符合以下要求：

(1) 審查人員與管制單位必須詳細說明設施除役期間可能發生之意外事件，如，核安、幅安、工安、環安、火災、天然災害事件如颱風、暴雨、土石流、地震及海嘯等，並敘述各項意外事件的發生原因、評估方法、後果管理及其影響分析，並分析及明確說明意外的輻射劑量後果與造成關鍵群體健康效應的影響。

(2) 申請單位對合理可預見的意外事故，評估廠址外的人員輻射劑量及健康影響，這些皆須詳細列在安全評估報告中。

在安全評估上，審查人員與管制單位必須審查關於核能設施除役期間可能發生之意外事件的報告。審查單位須嚴格審查申請單位是否充分瞭解意外事件、天然災害事件及人為破壞等的意外事件，以供各項意外事件的發生原因、評估方法、後果管理及其影響分析。同時，申請單位亦須對除役期間可能發生之假想事故進行說明，以作為除役期間預期之意外事件安全評估。

5.5 輻射劑量評估及輻射防護措施

審查人員與管制單位將會審查除役中輻射劑量評估及輻射防護措施之相關文件，而審查的基準與審查要點，則須符合以下要求：

（1） 除役各階段輻射源項，如廢液、廢氣與放射性廢棄物等之處置方式、
性質、種類、數量、核種及活度，以及放射性廢棄物運送、貯存對民眾健康疑慮影響與輻射劑量評估的說明。

（2）依各階段核子反應器設廠結構及各重要系統、設備、組件等的拆除方法與程序，說明進行拆除時對作業人員的輻射劑量評估與輻射安全分析影響。

（3）說明除役各階段計劃排放之廢氣或廢液所含放射性物質之特性及排放作業之管理，並提供廢氣與廢液的處理作業對人員之劑量評估及輻射安全分析結果。

（4）說明除役各階段輻射監測計畫與空氣輻射監測計畫、作業人員攝入量的各項推定濃度限值，以及敘述對作業人員輻射劑量之監測計畫。

（5）描述作業人員攝入量的各項推定濃度限值及評估方式。

（6）對於排放到水或空氣的放射性廢棄物，須進行分析並提供相關排放率、稀釋因數等數值之分析資訊。

（7）建議採用國際公認之劑量評估方法來評估民眾關鍵群體之輻射劑量結果，所得結果須符合「遊離輻射防護安全標準」之規範。

在安全評估上，審查人員與管制單位須進行定質評估，評估申請單位是否遵循 10 CFR parts 19 與 20 的準則，並且可於除役活動期間保護工作人員免於遊離輻射傷害。審查人員與管制單位將評估申請者對於工作人員輻射安全之量測，是否符合對輻射防護計畫之要求。
5.6 品質保證方案

審查人員與管制單位將會審查除役中品保計畫管理組織與各單位管理之架
構、管控的品質保證計畫文件、符合品質保證計畫的一致性法規、許可證與品
質保證方案要求、品保記錄的管理方式、執行監督審核之審核計畫等。審查的
基準與審查要點，則須符合以下要求：

（1）申請單位必須詳細說明品質保證相關組織架構之編組、功能、責任
與權限，管理理念及必要的資源。

（2）審查人員與管制單位需確認計畫中所需達成之目標，其執行項目、
權力與義務需清楚地以書面形式記錄，包括達成目標作業品質以及維持
品質之相關事項。

（3）申請單位必須詳細說明適用之法規、標準，人員必要之講習訓練、
審查與監督方式。

（4）申請單位必須詳細說明應用之作業程式書、工作說明書或圖面等相
關作業文件。

（5）申請單位必須詳細說明品質作業檔案確保有實施適當的管控措施，
如，品質保證手冊、品質管控文件、技術報告。

（6）申請單位必須詳細說明各項與品質及具主要安全功能之製件均能在
管制情況下，遵照適切的法規、標準、規範及其他特殊要求，由合格人
員依規定之作業程式及裝備等來完成，達到預定之目標。

（7）申請單位必須詳細說明除役相關作業之採購與施工均予以檢驗，並
設立查核點，以確保各項組件、系統及結構，均能符合有關法規之品質要求。

（8）申請單位必須詳細說明改正措施，使其能快速識別不符合品質要求的事項，並採取適切之改正行動。

（9）審查人員與管制單位應核對是否明顯影響品質情況、造成此情況的原因，以及用來防止此情況重複發生的改正措施皆有予以記錄，並回報管理階層，以進一步執行審閱與評估。

（10）申請單位必須詳細說明除役相關作業內各小組提供之品保紀錄及佐證符合計畫所需品質要求之實質證據。

（11）審查人員與管制單位應核對其是否有應品質保證計畫之要求，進行審核及監督的動作。並核對其審核監督結果中不足的部分，是否有作進一步地分析及追蹤，以利其審閱、評估、改正措施及後續追蹤之執行。

在安全評估上，審查人員與管制單位將須進行定性評估，以確保申請單位的品質保證方案是否確實。

5.7 假想事故評估與規劃

針對電廠於除役時所用之技術方法、時程等考量下，核能電廠須研議與規劃在除役期間可能發生之假想事故、評估方法及減抑之解決方案與預測方法。對於可能發生之意外事故、事故之演變、可能發生現場工作人員、大眾與環境傷害等，應提出一套完善之事故應變計畫。以 Connecticut Yankee 核能電廠之經驗作為參考，針對核一廠廠址及環境可規劃與預期可能發生之事故，放射核種...
假想於除役期間因意外或操作不慎而導致滲入地底及土壤，並藉由地下水之流動與擴散而造成污染。因此，可藉由評估方式來預測放射性污染源之特性、地下水流動方向與擴散遷移等假想事故，進行分析評估與規劃。

核一廠址座落於乾華溪狹窄的峽谷底部，砂石和粗礫石沖積層之基岩上。基岩幾乎為平緩，中間間隔為砂質頁岩及砂岩等。土壤層受溪谷侵蝕至基岩。由鑽探和震波探測的結果顯示，砂和礫石厚度往下游增加，其厚度約從10m至18m不等。廠區有兩層地下水區域存在，一為上部之自由區域，其主要為砂石所組成，而這些土壤均為高滲透性的；另一為下部之拘限區域，下層含水層位於桂竹林層內，由一系列透水之砂岩與不透水之頁岩所組成，如圖5-1所示為相關地形。
本研究可假設在核一廠除役期間，因為任何可能之非預期情況，或人為疏失導致放射性核種外洩。因此，可規劃建立一資料庫，期可假設任何可能發生之洩漏位置，以利於當廠區內發現放射性核種時，能夠於最快時間內做出因應對策，圖為計算分析模擬圖。假設放射性核種為氚，其位於地表深度 2 公尺處開始洩露，則可經由計算來預測其擴散範圍以及隨時間的變化趨勢，如圖 5-2 所示為根據實際核一廠地形圖所建立之計算模型。因
此，根據 Connecticut Yankee 核能電廠之經驗，在除役前關於地下水汙染可能情境下，最好能夠有一套完善的預防與應變方案。而分析計算的方式是可提供給未來除役核電廠一有效的預測方案之一，亦可考慮將其納入除役審查準則中，作為安全評估方案策略。
圖 5-3、核種隨時間分布圖

(時間依序為：1 年、5 年、10 年、15 年、20 年、25 年)

圖 5-4、放射性核種質量隨時間變化圖
本計畫最終目的係建立除役作業安全分析之審查要點與接受準則，故研究工作將依據目前之核子反應器設施除役計畫導則以及國外核電使用國家除役經驗，建立一套本土化之審查技術。以除役期間預期之意外事件安全分析為例，管制單位與審查人員將會針對在除役期間預期之意外事件安全分析之章節中的資料進行審查，將根據幾項要點來分析，如說明設施除役期間可能發生之意外事件；各項意外事件的發生原因、評估方法、後果管理及其影響分析；提供可能發生之假想事故之相關檔等。所需接受的基準及審查要點如下所列：

（1）說明設施除役期間可能發生之意外事件，依性質可分為：意外事件（如，核安、幅安、火災等）、自然災害事件（如，颱風、土石流、地震及海嘯等）及人為破壞等，並敘述各項意外事件的發生原因、評估方法、後果管理及其影響分析。

（2）說明並列出除役期間可能發生之假想事故，需確認有可能釋放到環境的放射性物質，並分析及明確說明造成意外的輻射劑量後果與造成關鍵群體健康效應的影響。

（3）評估廠址外的民眾輻射劑量及造成的健康效應影響與比較。

所需進行的安全評估，管制單位與審查人員將會核查關於設施除役期間可能發生之意外事件的報告，並會審查申請者是否充分瞭解意外事件、自然災害事件及人為破壞等的意外事件，以供各項意外事件的發生原因、評估方法、後果管理及其影響分析。同時，亦須對除役期間可能發生之假想事故進行說明，以作為除役期間預期之意外事件安全評估。
因此，安全評估與分析須明確地定義在所有除役階段裡必要的安全作業，這些作業為工程或管理的防護措施，都將提供必要的深度防禦(Defense in Depth)。因此，安全評估分析將可助於確認工程和管理的準備工作，並能夠適當的保證除役過程的安全性和特殊除役方案的選擇，提供審查人員進行除役計畫審查時的技術規範與基準。
第六章 結論與建議

根據文獻報告可以得知現階段國外除役之研究與實際經驗，且在核能電廠及反應器設施之安全性原則考量上，有許多除役作業安全項目須謹慎考量與執行，如廠址與設施之輻射特性、重要系統、設備及組件、除汙方式與放射性廢料處理、人員訓練、意外事故等。以意外事故為例，由國外除役報告可以瞭解，在除役時發生之意外由於燃料棒已移除，其主要的安全與輻射無關，與職業傷害有關之公安之外有較大的關係。但以最嚴謹的安全考量為基礎下，除役電廠須能辨別可能發生之意外事故、事故之分析與演變、事故造成之人員、大眾、與環境傷害等，並具備一套完善之事故應變計畫，以及防止意外發生與降低意外災害。以下提出幾點建議，以供後續除役之安全分析作為參考。

（1）國內核能電廠均為美規，核能法規亦主要是參考 NRC 之規範，因此建議審查技術將以 NRC 方法為主，另其他國家如歐洲、日本等國之優點，亦可供國內做為參考。

（2）由 Yankee Rowe 電廠除役經驗可知，除役時發生之意外可由各種方法降低其發生率，例如人員調動、事前 walk down、事前事後與每日之簡報、到包商之遴選等，均可作為台灣核能界參考。

（3）Connecticut Yankee 執行除役計畫之潛在因素考量為，活化的混凝土/鋼筋、地下水、表層土壤、埋地管道/管路、深層土壤，可作為國內之參考範例。
從其他國家核能電廠之除役經驗，如 Connecticut Yankee，從過渡期的活動、除役承包商的選用、用過核子燃料貯存、與主管機關和利害關係者的互動、工程及技術的使用、廠址關閉議題等，都是將來除役一定會面臨或可能面臨的問題，吸取這些核能電廠除役經驗並及早思考可能面對的問題，可讓國內的除役工作安全、順利、經濟及高效率地進行。

針對國內首度將進行除役之核能電廠，審查管制單位必須藉由國外經驗以充實自身安全評估與分析之專業知識，獲得及處理方法之經驗。嚴格審核與確實鑑定安全分析結果與確定必要之安全措施，同時須詳細審查與規範條件是否相合。而國內主管機關也應思考運轉與除役在管制上的差異，適時地解除核能電廠的部分管制，以減輕核能電廠人員、財務上的負擔。

17. Probabilistic Dose Analysis Using Parameter Distributions Developed for

26. INTERNATIONAL ATOMIC ENERGY AGENCY, Decontamination of Nuclear Facilities to Permit Operation, Inspection, Maintenance, Modification or Plant Decommissioning, Technical Reports Series No. 249, IAEA, Vienna (1985)

27. INTERNATIONAL ATOMIC ENERGY AGENCY, Methods for Reducing Occupational Exposures During the Decommissioning of Nuclear Facilities,

31. INTERNATIONAL ATOMIC ENERGY AGENCY, The Structure and Contents of Agreements Between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons, INFCIRC/153 (corrected), IAEA, Vienna (1972).

35. M. Varady, B. Mantooth, T. Pearl, and M. Willis, “Reactive decontamination of absorbing thin film polymer coatings: model development and parameter determination,” American Physics Society March Meeting 2014, Volume 59,

