Development and Research of Energy Harvester for Indoor Environment of Sustainable Energy System

計畫編號：1062001INER025
受委託機關(構)：台灣科技大學
計畫主持人：郭東昊
聯絡電話：02-27303291
E-mail address：dhkuo@mail.ntust.edu.tw
兼任助理：羅傑
研究期程：中華民國 106 年 2 月至 106 年 12 月
研究經費：新臺幣 52.5 萬元
核能研究所聯絡人員：薛天翔
報告日期：106 年 11 月 17 日
目 錄

目 錄 ... I

圖目錄 .. II

表目錄 .. VI

中文摘要 .. 1

Abstract ... 4

壹、計畫緣起與目的 .. 7
 一、前言 ... 7
 二、研究動機與目的 .. 10
 (一)固態鋰超離子導體 ... 10
 (二)高分子電解質的種類與發展趨勢 .. 16
 (三)全固態鋰離子電池 ... 18

貳、研究方法與過程 .. 19
 一、機械合金法+粉體煅燒製程 ... 20
 二、化學析出法+粉體煅燒製程 ... 20
 三、鋰離子傳導率 ... 21
 四、電池製作與電池特性分析 ... 22

參、主要發現與結論 ... 23
 一、機械物理合金法 ... 24
 二、化學沉析法 .. 28
 三、電性測試 ... 39
 四、核能研究所合作之電池測試 .. 47
 五、結論 ... 51

肆、參考文獻 .. 53
圖目錄

圖 1.1 Li_{10}GeP_{2}S_{12} 之結晶結構 .. 11
圖 1.2 不同鋰離子導體其導電率與溫度之間的關係 11
圖 1.3 鋰離子於不同(a) BCC；(b) FCC 與(c) HCP 結晶結構內的傳輸路徑以及其個別的活化能 ... 12
圖 1.4 鋰離子於不同 BCC 與 FCC 晶結構內的鋰離子傳輸路徑機率分佈圖 ... 13
圖 1.5 低溫阻抗分析圖以及不同溫度下阻抗分析所獲得之導電率 .13
圖 1.6 XRD 單晶繞射所得不同結晶方向所得的晶體結構解 15
圖 1.7 (a,b) 不同溫度下的阻抗分析；(c) lnσ vs. 1/T 作圖，以獲得活化能 ... 15
圖 1.8 Li_{0.6}(Li_{0.2}Sn_{0.8})S_{2} 超離子導體相關之晶體結構 16
圖 1.9 PEO+LiAsF_{6} 螺旋結構圖 ... 17
圖 1.10 薄膜電池結構 ... 19
圖 1.11 不同電池之能量密度比較 ... 19
圖 2.1 Bron 等人在 Li_{10}SnP_{2}S_{12} 超離子導體模擬等效電路圖[10]，半電池元件測試示意圖 ... 21
圖 3.1 (a) 文獻[26]報導的 Li_{4x}Sn_{1-x}S_{2}，0.11<x<0.33，其 XRD 繞射分
析圖；(b)本實驗於物理球磨合成法 LTS 粉體於不同硫化溫度
反應後的 XRD 繞射分析圖；(c)文獻[10]報導的 Li_{10}SnP_{2}S_{12}；(d)
本實驗不同硫化後的 LTPS 其 XRD 繞射分析圖；(e)使用 LTS
合成出來粉體經兩周後轉變成 LiOH 之特徵峰圖26

圖 3.2 (a) Holzmann 等人於 2016 年發表新型層狀結構之
Li_{0.6}(Li_{0.2}Sn_{0.8})_{2} 超離子導體[11]其 SEM 圖與其 EDS 分析；(b)
本研究於 750 ℃下所製備的 LTS 其粉體顯微結構與 EDS 元素
分析圖；(c)(d)本研究於 500 ℃下所製備的 LTPS 粉體其顯微結
構與二次相 EDS 元素分析圖 ..28

圖 3.3 由左至右分別是未煆燒、450 ℃、500 ℃、550 ℃、600 ℃ 與
650 ℃ 等不同溫度煆燒所得之水相化學合成 L_{x}M_{y}S 粉體....30

圖 3.4 (a) 文獻報導的 Li_{x}Sn_{1-x}S_{2}，0.11< x< 0.33，XRD 繞射分析圖；
(b) 文獻報導的 Li_{2+x}SnS_{3} 之 XRD 繞射分析圖；(c) 文獻報導的
Li_{2}SnS_{3} 之 XRD 繞射分析圖；本實驗按照不同比例的 Li、M
前驅物進行水相化學合成法製備前驅粉體，於(d)500 ℃、(e)
550 ℃、(f)600 ℃ 之不同硫化溫度下進行硫化反應後，所得的
L_{x}M_{y}S 其 XRD 繞射分析圖
...32

圖 3.5 本實驗按照不同 Li、M 比例的前驅物進行水相化學合成法製
備前驅粉體，於 500 ℃、550 ℃、600 ℃ 之不同硫化溫度下
進行硫化反應後，所得的 LₓMᵧS 其 SEM 與擇區 EDS 元素分
析圖 ...34

圖 3.6 不同組成比之前驅物經 550℃下的煅燒硫化反應後所得 LₓMᵧS
之粉體之之擇區 EDS 組成分析 ..36

圖 3.7 (a) 分成 Li₁₀SnP₂S₁₂ 市售粉體和其暴露於空氣中 2 週之光學照
片；(b) Li₁₀SnP₂S₁₂ 市售粉體經暴露於空氣前後之 XRD 圖；(c)
我們所製程之 LM₁₃S-550 粉體和其暴露於空氣中 2 週之光學
照片；(d) LM₁₃S-550 粉體經暴露於空氣前後之 XRD；(e)
Li₁₀SnP₂S₁₂ 與 LM₁₃S-550 粉體分別接觸水後之光學照片 .38

圖 3.8 (a,b) LₓMᵧS-550；(c,d) L₁₁MS-550、(e,f) LM₁₃S-550 分別使用
(a,c,e) 雙鋰極板和 (b,d,f) SS-不鏽鋼極板之 EIS 分析測試......40

圖 3.9 C2032 鈕扣型電池組裝示意圖 ..41

圖 3.10 不同比例的 LₓMᵧS 前驅體於壓碇後，經不同溫度的煅燒硫化
所得 (a) L₁₁MS-550；(b) LₓMᵧS-550；(c) LM₁₃S-500；(d) LM₁₃S-
550；(e) LM₁₃S-600；(f) LM₁₂S-500；(g) LM₁₂S-550；(h) LM₁₂S-
600；(i) LM₁₃S-500；(j) LM₁₃S-550；(k) LM₁₃S-600 砌材，以
雙鋰極板進行 EIS 量測以得到離子導電率434

圖 3.11 (a) 固態陶瓷 NIE Li₁₀SnP₂S₁₂ 之粉體；(b) 核能研究所鈹傳高分
子與我們固態陶瓷導鈹離子粉體混成後所得混成材料之電
化學阻抗 EIS 測試 ..46
圖 3.12 使用高分子電解質及固態陶瓷電解質混成之全固態鋰電池
製作示意圖

圖 3.13 使用核能研究所高分子電解質並添加 (a) 0%LₓMᵧS；(b) 5%LₓMᵧS；(c) 20%LₓMᵧS 固態陶瓷電解質之混成固態電解質之 CV 檢測

圖 3.14 High voltage LCO 正極、核能研究所之鋰離高分子搭配 5%LₓMᵧS 與 20%TMS 電解液所得電池之充放電循環圖

圖 3.15 High voltage LCO 正極、核能研究所鋰離高分子搭配 5%LₓMᵧS 與 20%TMS 電解液所得電池之循環壽命圖
表目錄

表 1.1 $\text{Li}_{10}\text{Si}_{0.3}\text{Sn}_{0.7}\text{P}_{2}\text{S}_{12}$ 的導電率測量值 .. 14

表 2.1 合成材料及檢測簡稱命名 .. 22

表 3.1 不同前驅物成分比例與硫化溫度所得 LaM_{y}S 鋰離子傳導率 45
永續能源主要來自太陽能、熱能、風能、水力等，採用永續能源可以減少對化石燃料資源的依賴，並能減少溫室氣體排放。這些能源應用於日常生活需要將其轉化為電能，但是用電量與頻率時刻在變動，如何提供一穩定的電量供應就需要有電池系統，不僅能把多餘的發電儲存起來，並且能夠穩定的提供所需用電。未來不僅電動車需要用到大量電池，手持裝置、3C 用品、家電產品等也都大量使用電池，將綠色永續能源捕獲應用於家居室內，其中電池，特別是鋰電池，將是搭配永續能源重要的裝置。目前商品化的鋰電池主要採用有機電解質來製作，但電池不當使用導致受熱與爆炸危險的問題，持續有發生過。此外，考慮到微型化、可撓性與高能量密度，可撓式全固態鋰電池的開發有其重要性。

目前固態電解質材料主要有兩種: (1) 無機陶瓷固態電解質薄膜與 (2) 高分子固態電解質薄膜兩種。無機陶瓷固態電解質薄膜的材料雖能提供所需的鋰離子導電度，但存在有剛性問題，無法應用於捲曲應用的條件；高分子固態電解質薄膜材料皆屬導電高分子，能夠移轉共軛電子但鋰離子導電度皆不理想。

本研究採用有機高分子/無機陶瓷材料混成系統的固態電解質來製作可撓式全固態鋰電池。固態電解質採用世界上較為新型之材料
與導電高分子混成達到固態電解質的薄膜化程度。考量成本與特性，
此陶瓷電解質材料嘗試 Li_{10}SnP_2S_{12} 與最新具有層狀結構的
Li_{0.6}(Li_{0.2}Sn_{0.8})S_2 之傳統製程以及本實驗開發之合成固態陶瓷高鋰離子傳導之粉體製程。此陶瓷電解質粉體之製備，採用機械合金與煅燒
製程於組成 Li_{10}SnP_2S_{12}、Li_{0.6}(Li_{0.2}Sn_{0.8})S_2；化學沉析法與煅燒製程於
固態陶瓷高鋰離子傳導之粉體(鋰硫化物，L_xM_yS)，也需配合材料組成的揮發特性進行製程調控。所得粉體進行粉體結構組成分析外，也
採用核能研究所研發之導電高分子塗佈成膜後，進行薄膜材料物性
分析，最後完成電池三明治結構之鋰金屬/混成固態電解質/LiCoO_2 電池元件進行元件電特性分析。

從研究結果得知，經由機械合金與煅燒製程組成 Li_{10}SnP_2S_{12}、
Li_{0.6}(Li_{0.2}Sn_{0.8})S_2 之粉體合成後，非常不易保存，容易於大氣中相轉
變，因此電性方面無法討論。化學沉析法為本實驗室採用之合成法，
透過煅燒製程，成功開發出一個鋰硫化物之固態陶瓷高鋰離子傳導
之粉體(L_xM_yS)，合成不須在手套箱中進行，亦可保存於大氣中，不
易變質，該固態陶瓷高鋰離子傳導材(L_xM_yS)具有最佳的鋰離子導電
率為 2.487 \times 10^{-4} S/cm，並透過與核能研究所研發之高分子混合形成
固態鋰離子電解質具有鋰離子傳導率為 3.19 \times 10^{-3} S/cm，將此混成
固態電解質與 High voltage LCO 搭配組半電池進行電化學 CV 量測，
已能達到計畫標準 500 cycles，而透過充放電測試，目前進行測試可
達 60 圈且無衰退現象，此充放電測試持續進行，並且可以達到 583 Wh/L 能量密度，達到計畫預期。本研究進行充放電到 60 圈，由於無損耗現象，距離計畫長遠目標 200 圈應該是非常有機會的。
Abstract

Sustainable energy involves energy from solar, heat, wind, hydroelectric sources. Its utilization can lower the reliance of human daily life on petroleum and the emission of global warming gas of CO$_2$. The sustainable energy needs to be converted into the electrical energy for accessible application. However, the amount of electrical energy and its usage frequency are different at the different periods in the daily life. To have stable electrical power output and to store the excessive sustainable energy, battery, especially Li battery, is a required device to work out. The energy can store in battery for electric car, handheld device, 3C supplies, home appliance etc. Li battery is an unavoidable device in the near future due to the acceleration of Tesla electric car on market.

Rechargeable Li$^+$ ion batteries are leading in performance but suffer from safety concerns augmented by the use of liquid electrolytes. Current lines of research are therefore directed towards the development of non-flammable, non-toxic solid Li electrolytes for use in all-solid-state Li$^+$ ion batteries with similar power densities. In view of the delicate nature of the solid–solid contacts they are particularly relevant for thin film battery applications. To solve the brittle nature, the flexible all-solid-state batteries are highly needed.

There are two kinds of all-solid-state batteries. One is using the ceramic electrolyte thin film deposited on electrode by sputtering thin film technology. Although it has the sufficient Li ion electrical conductivity, it has the brittle problem. The other one is the conjugated polymer thin film. This type of polymer can have the electron transfer capability but not for the Li ion transport.

In this study, organic/inorganic hybrid solid electrolyte is used to
form the flexible all-solid-state batteries. The chosen ceramic/polymer hybrid solid-state electrolyte to achieve the demand of thin-film are the newly developed material. Considering the cost and properties of Li_{10}SnP_{2}S_{12} · Li_{0.6}(Li_{0.2}Sn_{0.8})S_{2} with a Li-intercalated layer structure and this experiment exclusive solid state ceramic lithium-ion-conducting powder, the Li_{10}SnP_{2}S_{12} · Li_{0.6}(Li_{0.2}Sn_{0.8})S_{2} will be prepared by mechanical alloying together with the calcination under the protection environment. The L_{x}M_{y}S will be prepared by chemical precipitation method with the calcination under the protection environment. The procedure of synthesis L_{x}M_{y}S will be revised according to volatile properties. The electrolyte powders will be characterized for its structure, microstructure, and electrochemical properties. The ceramic powder will be blended with the polymer to form the casting solution for hybrid film, which will be characterized for its electrical properties in terms of the composition and volume ratio of ceramic electrolytes. At last, the Li metal/hybrid solid electrolyte/ LiCoO_{2} batteries will be made and its performance will be evaluated.

From the results of the study, powders of Li_{10}SnP_{2}S_{12} and Li_{0.6}(Li_{0.2}Sn_{0.8})S_{2} after being prepared by mechanical alloying and calcination were abandoned because they were not stable in air. The Li sulfide powders prepared by the chemical precipitation method following with calcination were successfully synthesized as the fast Li-transport conductor because they were stable in air without the need of the glove box during the synthetic process. The achieved Li transport conductivity was 2.487 × 10^{-4} S/cm. The organic/inorganic hybrid formed by mixing Li_{0.6}(Li_{0.2}M_{0.8})S_{2} with polymer electrolyte had the Li-transport conductivity of 1.277 × 10^{-2} S/cm. After combining with the high voltage
LCO electrode for the C-V measurement on a half-cell for 500 cycles, the cell tested for the charge-discharge tests reached 60 laps without degradation and kept its energy density at 583 Wh/L. It is expected that our cell can reach the goal of the 200-lap charge-discharge test, after it passed the 60-lap tests.
壹、計畫緣起與目的

一、前言

從60、70年代爆發石油危機後，能源缺乏，全世界的科學家積極尋找替代能源；然目前化石燃料的燃燒也造成空氣污染，影響人類健康和全球氣候變化。隨中國大陸、東南亞、印度、非洲等地的社會與經濟進步，大氣中二氧化碳含量快速增加，二氧化碳的排放所造成的溫室效應與地球暖化是人類存活於地球目前最迫切要解決的事情之一。二氧化碳主要源自化石燃料，減少使用化石燃料改採再生潔淨能源，增加海洋藻類與陸地披植是改善大環境的治本方法，但仍面臨嚴峻考驗。採用再生清淨(永續)能源，包括來自核能、風力能、太陽能、水利能等利用轉換，以電能、氫能、生質能等形式應用是科技上需要精進之處。永續能源應用於日常生活需要將其轉化為電能，但是用電量與頻率時刻在變動，如何提供一穩定的電量供應就需要有電池系統，不僅能把多餘的發電儲存起來，並且能夠穩定的提供所需用電。未來不僅電動車需要用到大量電池，手持裝置、3C用品、家電產品等也都大量使用電池，將綠色永續能源捕獲應用於家居室，其中電池，特別是鋰電池，將是搭配永續能源重要的裝置。

由伏特(Alessandro Volta)發明最早的電化電池-伏打電池，到Gassner做出一次電池-乾電池。在之後隨著二次電池的開發，鉛酸電
池、鎳鎘電池等也逐漸浮出檯面。一次電池不可充電，用完就丟；而二次電池則可充放電並重複使用。現今最普遍的二次電池為鉛酸電池和鎳鎘電池，前者太重，後者則有鎘汙染及充放電記憶問題。為了解決上述問題，鋰二次電池一直是研發的重點項目之一[1]。

至1980年代由英國John B. Goodenough發表有關鈷鋰電極(LiCoO₂)的研究成果，帶動鋰離子儲能裝置之相關研究，隨後成功開發碳系負極，至此才得以完成可充放電的二次鋰離子電池[2]。二次電池是電動車重要的核心。早期發展的鋰二次電池較為人所熟知的鋰電池系統有Li/MS₂、Li/LiAsF₆、LiSO₂、LiMnO₂、Lipolypyrrole等，但上述這些系統都因缺乏穩定性而暫停。直到1992年新力(Sony)成功開發出鋰離子電池，以一種鋰離子和凝膠聚合物的混合物做為電解質，改善了電池的充放電次數與安全問題，鋰離子二次鋰電池才正式的被商業化。

筆記型電腦、穿戴式電子與物聯網產品的蓬勃發展，此類裝置對電池規格的要求很高，不僅要小、輕、薄且要能夠儲存強大能量，最重要的是需要確保使用安全。傳統的鋰電池在微小化有相當困難度，因液態有機電解質對環境及人體都具毒性，長時間的使用易產生漏液現象，甚至造成燃燒或爆炸，危害安全。而目前市場上所使用的鋰電池多數是含有溢出燃燒與爆炸之虞的液態電解質。

鋰離子電池主要由正極、負極、隔膜、電解液、結構殼體等部分
組成，其中電解液使得電流可以在電池內部以離子形式傳導。電解液技術是鋰電池的核心技術之一，優勢在使電池達到輕、薄、柔性化的前景。基於安全上的考慮，目前產學研究機構都積極開發全固態鋰電池。相較於鋰離子電池，關鍵在電解質為固態，固態電解質薄膜分為兩類，無機陶瓷固態電解質薄膜及高分子固態電解質薄膜[3]。無機陶瓷固態電解質薄膜使用全磁控濺鍍法製備而成，電池特性具有超高水準；擁有高單位面積放電電容量，能量密度大於 1000 Wh/L；高安全係數，輕薄(< 200μm)且可根據產品的要求設計任何形狀，長循環壽命，以及在10C的放電下保有65%電容量。高分子固態電解質薄膜則可應用於傳統鋰電池正負極極板製作過程，並可以配合於Roll-to-Roll製程；鈷酸鋰(LCO)全固態鋰電池面積為4cm²，電容量為6mAh；面積40cm²，電容量為60mAh；成品可重複加熱使用外，成膜後或於電池貼合組裝可剪裁成不同大小及形狀，成膜時間短，成膜品質穩定，操作簡單，利於規模化生產；電池組裝上透過貼合的方式增加便利性，可將固態電解質薄膜分別貼合於正、負極上，或是緊貼合於一面極板上，即可形成電池並正常工作，過程簡單、快速。

各種穿戴式電子產品蓬勃發展如智慧手錶、智慧眼鏡、穿戴式醫療照護產品、運動和健康管理產品等是下一代電子產品發展的重要方向。全固態電池是科研與工業界中，非常有前景的明日之星[4-6]。穿戴式裝置的電池要求很高，不僅要小、輕、薄，還必須擁有強大能
量。而且這些穿戴式電子產品由於頻繁地與人體接觸，因此對人體的安全性也是非常重要的。然而傳統的鋰電池在微小化有一定的困難度，以及液態電解質本身對環境及人體都擁有毒性，長時間的使用易產生漏液現象，造成鋰電池燃燒或爆炸的現象發生，增加使用電池的不安全性。

二、研究動機與目的

(一)固態鋰超離子導體

1. $\text{Li}_{10}\text{GeP}_2\text{S}_{12}$ 固態鋰超離子導體之發現

Kamaya 等人於 2011 年於 Nature Materials 發表此一新材料作為固態鋰超離子導體[7]。實驗中，他們是採用 GeS$_2$、P$_2$S$_5$ 與 Li$_2$S 粉體於 550℃ 真空封管反應獲得。獲得之 $\text{Li}_{10}\text{GeP}_2\text{S}_{12}$ 其結構不同於以往鋰離子導體，屬於正方晶結構，晶格常數 a = 8.71771(5) Å, c = 12.63452(10) Å，其結晶空間群為 P4$_2$/nmc，具有 PS$_4$ 與 GeS$_4$ 之四面體結構，其結晶結構如下圖 1.1 所示。此新材料於常溫下，導電率為 12 mS/cm，於-110~110 °C 的溫度區間其活化能為 24 kJ/mol，圖 1.2 顯示不同溫度時的導電率。實驗中，他們也進行 LiCoO$_2$ 陰極/$\text{Li}_{10}\text{GeP}_2\text{S}_{12}$ 固態鋰離子電解質/In 之電池元件的製作與量測，其具有放電容量達 14 mA/g;放電效能達 100%。
2. 固態鋰超離子導體之材料設計

Y. Yang 等人於 2015 年於 Nature Materials 發表[8]，藉由比較與解析不同種類的鋰超離子導體的結構，他們發現陰離子的主體堆積結構、陽離子的種類、陽離子孔洞等對鋰離子於鋰離子導體內的電傳輸有絕對相關性。其中，陰離子以體心立方的結構堆積，最有利於鋰離子於四面體晶格位置，進行跳躍 Hopping 的離子傳輸有較低的活化能與較佳的鋰離子遷移能力，以達到最佳之導電能力(圖 1.3)。這
是為何立方晶的 Li₁₀GeP₂S₁₂ 比其他結構 FCC 與 HCP 結構有較佳導電度之原因。下圖呈現鋰離子於不同結構中的鋰離子不同遷移路徑所需要的活化能，以立方晶 T-T 路徑的 0.15 eV 活化能最低。經由立方晶 T-T 路徑的鋰離子傳輸有最高的鋰離子連續傳輸的分布密度，證實其有較高的遷移率 (圖 1.4)。

圖 1.3 鋰離子於不同 (a) BCC、(b) FCC 與 (c) HCP 結晶結構內的傳輸路徑以及其個別的活化能
3. Li_{10}Si_{0.3}Sn_{0.7}P_{2}S_{12} 超離子導體之開發

Bron 等人於 2016 年發表 Li_{10}Si_{0.3}Sn_{0.7}P_{2}S_{12} 超離子導體[9]，藉由 Si 與 Sn 共取代單價昂貴的 Ge 元素，用以取代 Li_{10}GeP_{2}S_{12}。實驗中，他們亦製備了 Li_{10}GeP_{2}S_{12}、Li_{10}SnP_{2}S_{12}、Li_{10}SiP_{2}S_{12}、Li_{10}Al_{0.3}Sn_{0.7}P_{2}S_{12} 等材料進行對比分析。製備 Li_{10}Si_{0.3}Sn_{0.7}P_{2}S_{12} 是採用 Sn、Si、S、P_{2}S_{5} 與 Li_{2}S 粉體於 550 °C/72 小時反應獲得。製備 Li_{10}SnP_{2}S_{12} 是採用 SnS_{2}、P_{2}S_{5} 與 1.03 Li_{2}S 粉體於 600°C/72 小時反應獲得。製備 Li_{10}GeP_{2}S_{12} 是採用 GeS_{2}、P_{2}S_{5} 與 Li_{2}S 粉體於 550 °C/8 小時反應獲得。製備 Li_{10}SiP_{2}S_{12} 是採用 Si、S、P_{2}S_{5} 與 Li_{2}S 粉體於 550 °C/8 小時反應獲得。下圖是低溫下之阻抗分析圖以及不同溫度下由阻抗分析所獲得之導電率(圖 1.5)。如下表所示，Li_{10}Si_{0.3}Sn_{0.7}P_{2}S_{12} 的導電率測量值與 Li_{10}GeP_{2}S_{12} 相近，分別是 8 與 9 mS/cm (表 1.1)。

![Diagram](image)

圖 1.5 低溫阻抗分析圖以及不同溫度下阻抗分析所獲得之導電率
表 1.1 $\text{Li}_{10}\text{Si}_{0.3}\text{Sn}_{0.7}\text{P}_{2}\text{S}_{12}$ 的導電率測量值

<table>
<thead>
<tr>
<th>E_a [eV]</th>
<th>$\log A$</th>
<th>$\sigma_{25^\circ C}$ extrapolated [mS cm$^{-1}$]</th>
<th>$\sigma_{25^\circ C}$ measured/estimated [mS cm$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Li}{12}\text{Si}{2}\text{P}{2}\text{S}{12}$</td>
<td>0.29</td>
<td>2.9</td>
<td>13</td>
</tr>
<tr>
<td>$\text{Li}{12}\text{Sn}{0.6}\text{P}{2}\text{S}{12}$</td>
<td>0.29</td>
<td>2.8</td>
<td>8</td>
</tr>
<tr>
<td>total</td>
<td>0.29</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>$\text{Li}{10}\text{GeP}{2}\text{S}_{12}$</td>
<td>0.31</td>
<td>3.2</td>
<td>9</td>
</tr>
<tr>
<td>grain</td>
<td>0.30</td>
<td>3.3</td>
<td>17</td>
</tr>
<tr>
<td>grain boundary</td>
<td>0.31</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>0.30</td>
<td>3.1</td>
<td>9</td>
</tr>
<tr>
<td>$\text{Li}{12}\text{P}{2}\text{S}_{12}$</td>
<td>0.30</td>
<td>2.5</td>
<td>2</td>
</tr>
</tbody>
</table>

a Measured values, in bold.
b Estimated values.

4. $\text{Li}_{10}\text{SnP}_{2}\text{S}_{12}$ 超離子導體之開發

Bron 等人於 2013 年發表 $\text{Li}_{10}\text{SnP}_{2}\text{S}_{12}$ 超離子導體[10]，藉 Sn 取代單價昂貴的 Ge 元素製程較低成本的 $\text{Li}_{10}\text{SnP}_{2}\text{S}_{12}$，用以取代 $\text{Li}_{10}\text{GeP}_{2}\text{S}_{12}$。實驗中，他們以 Li_4SnS_4、Li_2S 與 P_{2}S_5 粉體混合後加熱於 600 °C/48 小時進行反應。產生的反應物經 XRD 結構鑑定具有與 $\text{Li}_{10}\text{GeP}_{2}\text{S}_{12}$ 相同結構，有空間群為 $\text{P}4_2/\text{nmc}$，(no. 137)，其單晶 XRD 繞射的晶體結構解析如左下圖所示(圖 1.6)。利用阻抗分析量測與 Nyquist Plot 分析其電特性，進行於不同溫度下的阻抗量測與分析，於 300K 下具有 7 mS/cm 的晶界電導率與 4 mS/cm 的總電導率，晶粒活化能 0.27 eV 與晶界活化能 0.6 eV，相較於 $\text{Li}_{10}\text{GeP}_{2}\text{S}_{12}$ 的 12 mS/cm 電導率，相當具有商品化競爭力(圖 1.7)。
Holzmann 等人於 2016 年發表新型層狀結構之 \(\text{Li}_{0.6}(\text{Li}_{0.2}\text{Sn}_{0.8})\text{S}_2 \) 超離子導體[11]。實驗中，他們以 \(\text{Li}_2\text{S} \)、\(\text{SnS}_2 \) 與 S 細體混合後加熱於 700-750°C 進行反應。實驗發現，\(\text{Li}_{1.0}(\text{Li}_{0.33}\text{Sn}_{0.67})\text{S}_2 \) 與 \(\text{Li}_{0.6}(\text{Li}_{0.2}\text{Sn}_{0.8})\text{S}_2 \) 共存。\(\text{Li}_{0.6}(\text{Li}_{0.2}\text{Sn}_{0.8})\text{S}_2 \) 具有單斜晶結構，對稱空間群為 \(\text{C2/m} \) (no. 12)，晶格常數為 \(a = 19.217(7) \text{ Å} \), \(b = 3.6996(14) \text{ Å} \), \(c = 6.529(2) \text{ Å} \) 與 \(\beta = 109.056(4) \)，其與其母晶格 \(\text{Li}_{1.0}(\text{Li}_{0.33}\text{Sn}_{0.67})\text{S}_2 \) 相似，皆以邊相鄰的 Sn sulfide 八面體構成層狀結構，於層與層之間有填充鋰離子，藉由 \(^6\text{Li} \) NMR 的結構鑑定，可證明局部的 Sn 被鋰所取代，此晶體結構圖如下圖所示(圖 1.8)。此外，該團體也使用 \(^7\text{Li} \) NMR 進行鋰離子擴散係數測量，實驗獲得其室溫下的擴散係數 \(D_{\text{NMR}} \) 約為 \(10^{-11} \text{ m}^2/\text{s} \)，經由 \(D_{\text{NMR}} \) 求 \(\text{NMR} \) 約 \(9.3 \times 10^{-3} \text{ S/cm} \)，經由阻抗分析則得到約 \(1.5 \times 10^{-2} \text{ S/cm} \) 的導電率，與 \(\text{NMR} \) 導電率相近。此結果是目前世界所獲得之最佳 Li 離子導電率。因此，Li 離子的層狀結構發展甚為重要，是目前最具潛力的材料。
(二)高分子電解質的種類與發展趨勢 [12-14]

目前普遍市面上的商品所使用的液態鋰離子電池，其電解質為液態具毒性的有機溶劑，對人體有害，甚至使用上有漏液和爆炸的危險。所以開發不含或含少量有機溶劑的高安全型鋰高分子電池受到極大的青睞，也是必然的趨勢，如降低製作污染、抑制熱爆走機制、克服漏液與漲氣、相容薄型化設計，以及保障高能量電池的安全性[12]。

目前高分子電解質主要可區分成：純固態高分子電解質和膠態高分子電解質[14]，固態高分子電解質技術仍受限於低離子導電度(<10^{-4} S/cm)，放大製程良率與成本的瓶頸。而固態高分子電解質目前仍採用高分子電解質是將鹽類溶在高分子內而形成，可以分類為三種：dry solid systems、polymer gels 以及 polymer composites。Dry solid system 早期以 PEO (poly ethylene oxide) 錯合物為主，PEO 本
身導電度約為 10^{-9}Scm^{-1}，在加入鹽類 (LiBr、LiI、LiCl、LiSCN、LiCLO₄、LiCF₃SO₃、LiBF₄ 和 LiAsF₆) 之後，在室溫下，導電度可以達到 10^{-7}Scm^{-1}[15]。由實驗得知，約在 100°C 左右，才能使得 PEO-salt 具有如同有機電解液的導電度 10^{-3}Scm^{-1}。當鹽類溶解在 PEO 中時，Li⁺會被 rapped 在 PEO 所形成的螺旋狀結構中，如附圖 1.9 (PEO:LiAsF₆) [16]。

鋰離子移動是在非晶質 (Amorphous) 區域發生，當溫度高於玻璃轉化點 T_g 時，高分子電解質變成類似液狀機構，使得流動性增加，進而提高導電性。Polymer gels 高分子導電度在 $10^{-4} \sim 10^{-5} \text{Scm}^{-1}$ 時，離實用性仍有一大段距離。於是在高分子電解質中加入極性之有機溶劑作為可塑劑 (plasticizers)，形成 hybrid film，如此可以大幅提高導電度[16, 17]。這些電解質並非真正 solvent free 固態高分子電質，而是膠態高分子電解質 (Gel polymer electrolyte)。此類型的電解質通常導電度可達到 10^{-3}Scm^{-1}，分為 PEO 系膠體及 PAN、PVDF 系膠體。在 P(EO)n-LiX 中加入 PC (propylene carbonate) 或 EC (ethylene carbonate) 可以形成較「軟」的固態，並且擁有較低的機械穩定度[18, 19]。以 PAN (poly acrylonitrile) 和 PVDF (poly vinylidene fluoride) 為基底的膠體電解質是目前為止，最廣為被研究討論的，其中 PAN

![圖 1.9. PEO+LiAsF₆ 螺旋結構圖。](image-url)
polymer 中並沒有氧原子的存在，經由實驗發現，鋰離子在此的轉移數（transference numbers）大於 0.5，以 LiTFSI（Lithium bis(trifluoromethane sulfonyl)-imide）為例，可以達到 0.7 的轉移數。也是與本研究中所使用之高分子電解質類似。Weston 和 Stelle 發現，在 polymer matrixes 中添加一些鈍性的微粒（e.g. ZrO$_2$、TiO$_2$、Al$_2$O$_3$、疏水性矽藻土、玻璃纖維）來複合化，可以增加機械強度[16, 20]。

(三)全固態鋰離子電池

全固態電池類型中，亦有不同的組裝型式，如薄膜和塊狀。常見之全固態電解質常分為 6 大類，如氧化物(Oxide)、硫化物(Sulfide)、氫化物(Hydride)、鹵化物 ime(Halide)、高分子(Polymer)與薄膜(Thin Film) 等，其中又以薄膜之可撓性被受期許。全固態薄膜鋰電池可說是次時代鋰電池的一個重要發展，改善了傳統鋰電池安全性不佳的缺點，是新型鋰電池的重大突破，主要優勢在：(1) 全部由「固態」材料組成，包括正極，負極和電解質；(2) 運用電漿技術控制電池薄膜厚度僅數微米(μm)，更容易微小化及與半導體製程結合；(3) 單位能量密度遠大於傳統電池，並擁有長充放電循環壽命；(4) 經由固態薄膜的層層堆疊組成，不會在短路時或長時間使用後發生漏液，造成燃燒或爆炸[21, 22]。因此本研究考慮到微型化、可撓性與高能量密度，可撓式全固態鋰電池的開發有其重要性[23]。其結構如圖 1.10。其中最適合成為全固態薄膜電池之電解質為鋰磷氧氮化合物 (LiPON)，因為鋰磷氧氮化合物具有優異輕之重量、薄之厚度與甚至柔性屬性，且 LiPON 顯示極佳之穩定性，使電池具有更高之循環壽命、更高之能量密度，更高之安全性與更好可塑性[24]。如圖 1.11 所
示鋰離子薄膜電池於能量密度上為傳統電池的 4 倍。但高分子薄膜電池也是有優於傳統電池的 2.5 倍，是非常有發展潛力的[25]。

![薄膜電池結構](image1)

圖 1.10 薄膜電池結構

![不同電池之能量密度比較](image2)

圖 1.11 不同電池之能量密度比較

本研究希望嘗試使用自已實驗室開發之合成法，合成無機陶瓷高鋰傳粉體並將其與核能研究所研發之高鋰傳高分子，進行混成，提高它的固體占有率，藉此提高其安全性。

貳、研究方法與過程

本實驗主要分成四個部份，第一部份是根據文獻以物理機械合金合成法來製備高鋰子傳導率之固態電解質粉體 \(\text{Li}_{10}\text{SnP}_{2}\text{S}_{12} \) (LTPS)
與 Li_{0.6}(Li_{0.2}Sn_{0.8})S_2 (LTS) 粉體，並進行硫化煅燒處理，控制煅燒溫度，找出最適的條件；第二部分研究是將化學合成法製備出含鋰硫化物 (L_xM_yS) 化合物之前驅粉體，進行硫化煅燒處理，控制煅燒溫度，找出最適的條件；第三部分研究是以 L_xM_yS 前驅粉體製碇煅燒再進行阻抗分析試驗，用公式推算鋰離子傳導率；第四部份，選出最高鋰離子傳導率之試驗最佳值，進行與核能研究所共同研究之高分子混成摻雜，進行電化學測試。

一、機械合金法+粉體煅燒製程:

於 Li_{10}SnP_2S_{12} 製備上，採用 10Li_2S、1SnS_2 與 1P_2S_5 粉體以機械合金法混合球磨後加熱於 600 ℃ 小時進行反應獲得。預期採用機械合金法，可以讓原料合金化，先形成合金主要是因為 SnS_2 較易揮發造成組成不易掌握，先於較低溫下形成合金相，一旦形成四元合金相就不再是 SnS_2，則 Sn 高溫揮發的問題就可以控制，將此合成出來鋰錫磷硫 (Li、Sn、P、S) 的粉體命名為 LTPS。

於 Li_{0.6}(Li_{0.2}Sn_{0.8})S_2 製備上，採用 1Li_2S 與 2SnS_2 粉體以機械合金法混合球磨後加熱於 600-700 ℃/1-5 小時進行反應獲得。預期採用機械合金法，可以讓原料合金化，先形成合金主要是因為 SnS_2 較易揮發造成組成不易掌握，先於較低溫下形成合金相，一旦形成三元合金相就不再是 SnS_2，則 Sn 高溫揮發的問題就可以控制。將此合成出來鋰錫硫 (Li、Sn、S) 的粉體命名為 LTS。

二、化學析出法+粉體煅燒製程:

主要針對於 Li_{0.6}(Li_{0.2}Sn_{0.8})S_2 相關粉體製備上，先採用 Li 與 M 莫耳比 1:1 的前驅物，以化學反應析出法得到黑色前驅粉體 (L_xM_yS)，經由組成分析確定合成粉體後來調整莫爾比後，製備得到 L_xM_yS 前
驅粉體利用退火爐在氬氣(Ar)氣氛下，分別於 500°C、550°C、600°C下煅燒 3 小時。升溫速率為 10°C/min，降溫為爐冷降溫。

三、鋰離子傳導率

使用核能研究所電化學測試，下列條件分析得 LTS 之電阻值 (R_g)，經歐姆定率(公式 1)得出電阻值，公式 2 將電阻率 ρ 倒數轉換得出鋰離子傳導率 κ，由公式 1 帶入公式 2 得公式 3，得鋰離子傳導率 κ。AC 測試條件：1MHz~0.1Hz。

晶粒特性是由電阻器 R_g，電容器 C_g 和恆定相元件 CPEg 並聯組合所表示的。R_g 和 CPEg 與晶粒中的擴散和遷移有關。晶界特性由兩個串聯 R | CPE 元素。R1 是晶界與晶界的接觸電阻。R2 是晶界與晶界接觸時的高電阻層。越高頻 (10^5~10^6) 為晶粒響應，中低頻 (10^3~10^1) 為晶界響應。

圖 2.1 Bron 等人在 Li_{10}SnP_2S_12 超離子導體模擬等效電路圖[10]，半電池元件測試示意圖

\[R = \rho \frac{L}{A} \tag{1} \]

\[\kappa = \frac{1}{\rho} \tag{2} \]

\[\kappa = \frac{L}{RA} \tag{3} \]
四、電池製作與電池特性分析

(一)、有機/無機混成固態電解質塗佈漿料之製作:

與核能研究所共同研究之導電高分子和無機固態電解質粉體 L_xM_yS 混合，使無機固態電解質粉體達到細化及分散之目的，所得之漿料可以應用於電池堆的塗佈工程與元件製作。

(二)、可撓式全固態鋰電池製作與電池特性分析:

採用核能研究所標準製作流程來進行可撓式全固態鋰電池的製作。元件電池測試包括循環伏安量測、多次循環之充電-放電 C-V 測試、循環壽命分析、脈衝放電測試等，皆由核能研究所協助進行。為方便閱讀將合成與檢測之材料命名列如下表 2.1。

表 2.1 合成材料及檢測簡稱命名

<table>
<thead>
<tr>
<th>名字</th>
<th>元素</th>
<th>比例</th>
<th>命名</th>
</tr>
</thead>
<tbody>
<tr>
<td>物理合金法 Li_{10}SnP_{2}S_{12}</td>
<td>LiSnPS</td>
<td>Li:Sn:P:S=10:1:2:12</td>
<td>LTPS</td>
</tr>
<tr>
<td>物理合金法 Li_{0.6}(Li_{0.2}Sn_{0.8})S_{2}</td>
<td>LiSnS</td>
<td>Li:Sn=1:1</td>
<td>LTS</td>
</tr>
<tr>
<td>化學沉析法 L_xM_yS</td>
<td>L_xM_yS</td>
<td>Li:M=x:y</td>
<td>L_xM_yS</td>
</tr>
<tr>
<td>NEI Corporation Li_{10}SnP_{2}S_{12}</td>
<td>NEI</td>
<td>Li_{10}SnP_{2}S_{12}</td>
<td></td>
</tr>
</tbody>
</table>
參、主要發現與結論

本研究採用物理機械合金法及化學沉析法來制備物理合金法粉末 (LTPS、LTS) 與化學合成前驅粉末 (LₓMᵧS)，再進行硫化處理使其高溫轉相。然而，物理機械合成法在粉末製備完成後與文献中所記載之相關物理機械合成方法均有相同的問題出現，不易保存，極易受到水氣影響，在後面的第一部份便會加以說明，此物理機械合成法的粉末在實驗室中無法方便做研究，也難以做分析研究，所有事物都必須於手套箱內執行。而我們嘗試化學沉析法所製備的粉末，經過硫化處理後，LₓMᵧS 粉末得以保存於大氣之中，不易受到水氣影響，並調整其不同的 Li、M 含量比例，以觀察不同的 Li、M 含量對 LₓMᵧS 固態鋰離子導體性質與特性變化外，我們也改變不同的硫化溫度以探討其最佳條件的 LₓMᵧS 固態鋰離子導體。最後與行政院原子委員會核能研究所物理組研發之高分子電解質薄膜進行混成研究，量測其鋰離子傳導率，以及半電池元件測試，透過電化學分析儀觀察其電壓-電流元件圖、充放電檢測、循環伏安法、電化學阻抗分析等電特性研究。

為了討論上的方便，分為四部分；第一部分為物理機械合成法製作 LTPS 與 LTS 粉末；第二部分為化學反應沉析法，依據不同 Li、M 含量比例的 LₓMᵧS 粉末進行比較，並對溫度變數加以探討；第三部份針對 LₓMᵧS 進行電性量測，針對 EIS 分析一個完整的討論；第四部份採用核能研究所標準製作流程來進行可撓式全固態鋰電池的製作。元件電池測試包括循環伏安量測、多次循環之充電-放電 C-V 測試、循環壽命分析等，皆由核能研究所協助進行之探討。
一、機械物理合金法

本研究在第一期計畫當中使用機械合金球磨法，採用 10Li$_2$S、1SnS$_2$ 與 1P$_2$S$_5$ 粉體混合後，加熱製作配比為 Li$_{10}$SnP$_2$S$_{12}$ 粉體；以及採用 1Li$_2$S、1SnS$_2$ 粉體混合後，加熱製作 Li$_{0.6}$(Li$_{0.2}$Sn$_{0.8}$)S$_2$ 粉體，並對產物進行初步 XRD 與 FE-SEM 分析觀察，確認 XRD 特徵峰與文獻做比對，如圖 3.1。我們可以從圖 3.1(a)(b)當中可看出(a) Kuhn, Alexander 等人在 2014 年時發表 Li$_2$SnS$_3$ 一系列所製備的不同比例的 Li$_2$S 及 SnS$_2$ 粉體的 XRD 分析圖，而由圖 3.1(b)中可看出我們採用 1Li$_2$S、1SnS$_2$ 粉體混合後加熱製作所得 LTS 粉體透過不同的溫度硫化處理後，明顯的有良好的結晶平面且有明顯的特徵峰值相互對應在 2Θ 位置上。而由圖 3.1(c)(d)當中可看出我們採用 10Li$_2$S、1SnS$_2$ 與 1P$_2$S$_5$ 粉體混合後製成 Li$_{10}$SnP$_2$S$_{12}$ 粉體(圖 3.1(d))，實驗透過硫化處理後與 Bron 等人於 2013 年發表 Li$_{10}$SnP$_2$S$_{12}$ 超離子導體[10]文獻(圖 3.1(c))的峰值也有相近之特徵峰，可說明以物理合金法成功地合成出理想的材料。

在進行 Li$_2$SnS$_3$ 和 Li$_{10}$SnP$_2$S$_{12}$ 文章中 XRD 對比時，我們發現文獻中均使用在手套箱有 Ar 氣氛保護的環境當中進行合成，而我們實驗並無使用手套箱，可能由於曝露於大氣中的水分造成潮解與相分離，無法完全對應文獻中的 XRD 譜圖。究其原因，雖然在合成當中使用保護油相液體 Hexane 來阻絕水氣對粉體合成的影響，但煅燒製備出的粉體，即硫化處理後的粉體，其含鋰成分造成硫化物容易與空氣中的水、氧氣反應。因此，不論是 LTS 及 LTPS 粉體經過兩周後，其粉體 XRD 圖如圖 3.1(e)所示，皆會轉化為單純的 LiOH 而呈現其特徵繞射峰，顯然，無手套箱要合成此超離子導體甚困難。
圖 3.1(a)文獻[26]報導的 Li_{4x}Sn_{1-x}S_2，0.11 < x < 0.33，其 XRD 繞射分析圖；(b)本實驗於物理球磨合成法 LTS 粉體於不同硫化溫度反應後的 XRD 繞射分析圖；(c)文獻[10]報導的 Li_{10}Sn_{2}P_{2}S_{12}；(d)本實驗不同硫化後的 LTPS 其 XRD 繞射分析圖；(e)使用 LTS 合成出來粉體經兩周後轉變成 LiOH 之特微峰圖

由 SEM 來觀察形貌長相，針對 EDS 做初步半定量分析；並選擇了 XRD 最接近的 LTS-750 和 LTPS-500 來觀察形貌及 EDS 半定量
分析是否與文獻結果相同。由圖 3.2 中觀察表面形貌，LTS-750(圖 3.2(b)) 與文獻中所製備的 Li_{0.6}(Li_{0.2}Sn_{0.8})S_2 形貌(圖 3.2(a)) 上無特別明顯的不同，但 EDS 的半定量分析上面就出現不同之結果。圖 3.2(c)(d) 是我們針對不同的位置進行 LTPS-500 表面形貌與 EDS 半定量分析，發現 Sn、P、S 比極為不同；而 SEM 分析，其樣品放置測試載台上時，樣品暴露於空氣中，猜想 LTS-750 和 LTPS-500 已經與空氣中的水氣產生反應故 EDS 出現顯著差異，且 LTPS-500 有顯著的成分分布不均之問題，懷疑產生二次相結構，與 XRD 相互呼應，以現有設備無法繼續進行機械合金球磨之製程。

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>S</th>
<th>Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>71.43</td>
<td>28.57</td>
</tr>
<tr>
<td>Spectrum 1</td>
<td>70.60</td>
<td>29.40</td>
</tr>
<tr>
<td>Spectrum 2</td>
<td>70.59</td>
<td>29.41</td>
</tr>
<tr>
<td>Spectrum 3</td>
<td>70.14</td>
<td>29.86</td>
</tr>
<tr>
<td>Spectrum 4</td>
<td>70.55</td>
<td>29.45</td>
</tr>
<tr>
<td>Spectrum 5</td>
<td>70.69</td>
<td>29.31</td>
</tr>
<tr>
<td>Mean</td>
<td>70.51</td>
<td>29.49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight</th>
<th>Atomic</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>29.79</td>
<td>61.10</td>
</tr>
<tr>
<td>Sn</td>
<td>70.21</td>
<td>38.90</td>
</tr>
<tr>
<td>totals</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
圖 3.2 (a) Holzmann 等人於 2016 年發表新型層狀結構之 Li_{0.6}(Li_{0.2}Sn_{0.8})S_2 超離子導體[11]其 SEM 圖與其 EDS 分析；(b) 本研究於 750 °C 下所製備的 LTS 其粉體顯微結構與 EDS 元素分析圖；(c)(d) 本研究於 500 °C 下所製備的 LTPS 粉體其顯微結構與二次相 EDS 元素分析圖

二、 化學沉析法

本研究因物理合金法與煅燒後所製備的粉體其使用時有受潮不穩定的現象，為了解決遇水分解問題，研究團隊改採化學沉析法方式進行合成，主要針對 Li_{0.6}(Li_{0.2}Sn_{0.8})S_2 相關粉體製備為樣板來找尋解
決之道。我們先採用 Li 與 M 莫耳比 1:1 的前驅物，以化學反應析出法得到黑色前驅粉體(LₓMₙS)，再將製備得到 LₓMₙS 前驅粉體利用退火爐在氮氣(Ar)與硫源氣氛下，分別於 450 °C、500 °C、550 °C、600 °C、650 °C 下煅燒 3 小時。升溫速率为 10 °C/min。由於化學沉析法粉體初始顏色為黑色，透過高溫硫化後粉體轉黃色，如圖 3.3 所示。於 450~650 °C 區間，透過不同溫度尋找最佳參數，450 °C 硫化並未完全轉換成黃色，650 °C 則是轉為灰黑色。目前在研究成果上如圖 3.4 所示，已達成與文獻報導 Li₀.₆(Li₀.₂Sn₀.₈)S₂(圖 3.4(a))、Li₂SnS₃(圖 3.4(b))及 Li₄SnS₄(圖 3.4(c))等鋰錫硫化合物之 XRD 圖之特徵繞射峰，比對繞射峰位置已大致接近且強度更高，從 Li：M=1.1：1、Li：M=1：1.1、Li：M=1：1.2、Li：M=1：1.3 的組成變化於不同(d) 500 °C、(e) 550 °C、(f) 600 °C 硫化溫度進行硫化反應，特徵繞射峰位置都一樣且與文獻之特徵峰吻合。在不同的溫度條件下，按照 XRD 繞射峰強弱可判斷出 Li：M 比為 1：1.1 所製得粉體為結晶強度最好的合成條件。並以 SEM-EDS 進行不同前驅物組成於不同硫化溫度反應所得的 SEM 粉體影像以及該影像的選區 EDS 組成分析，如圖 3.5 所示。由於 EDS 偵測器無法直接偵測到 Li 原子，但可以勉強相對比較 M：S 比例，而就微觀形貌上，不同的溫度我們看到均為單一相的片狀結構，隨著溫度越高，片狀大小也隨之增加。EDS 方面，從前驅物比例 Li：M=1.1：1、Li：M=1：1、Li：M=1：
1.1 隨著 M 含量增加其對應的 EDS 所偵測到的 M 比例也隨之增加，但當前驅物比例 Li：M = 1：1.2、Li：M = 1：1.3 有較高 M 含量時，所增加 M 含量卻相對下降，此現象與 XRD 特徵繞射峰強弱變化相一致。

圖 3.3 由左至右分別是未煅燒、450 ℃、500 ℃、550 ℃、600 ℃ 與 650 ℃ 等不同溫度煅燒所得之水相化學合成 Li₃MₓS 粉體
圖 3.4 (a) 文獻報導的 Li_{4x}Sn_{1-x}S_{2}，0.11 < x < 0.33，XRD 繞射分析圖；(b) 文獻報導的 Li_{2x}SnS_{3} 之 XRD 繞射分析圖；(c) 文獻報導的 Li_{2}SnS_{3} 之 XRD 繞射分析圖；本實驗按照不同比例的 Li、M 前驅物進行水相化學合成法製備前驅粉體，於(d) 500 °C、(e) 550 °C、(f) 600 °C
<table>
<thead>
<tr>
<th></th>
<th>500°C</th>
<th>550°C</th>
<th>600°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM1.3S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom%</td>
<td>M:S = 39.55:60.45</td>
<td>M:S = 42.16:57.84</td>
<td>M:S = 44.02:55.98</td>
</tr>
<tr>
<td>LM1.2S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM1.1S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom%</td>
<td>M:S = 42.56:57.44</td>
<td>M:S = 37.35:62.65</td>
<td>M:S = 47.75:52.25</td>
</tr>
<tr>
<td>LM1.0S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom%</td>
<td>M:S = 42.56:57.44</td>
<td>M:S = 39.03:60.97</td>
<td>M:S = 42.35:57.65</td>
</tr>
</tbody>
</table>
圖 3.5，本實驗按照不同 Li、M 比例的前驅物進行水相化學合成法製備前驅粉體，於 500°C、550°C、600°C 之不同硫化溫度下進行硫化反應後，所得的 LₓMᵧS 其 SEM 與選區 EDS 元素分析圖

經由多次 EDS 組成分析檢測，發現此化學沉析法所製備之粉體透過高溫硫化，如圖 3.6 所示，該粉體可接觸空氣而不會有所變化，檢測出不純物約在 10%以下，可說明形成鋰硫化物。此外，我們化學沉析法所製備之粉體也與 NEI Corporation 公司所合成 Li₁₀SnP₂S₁₂ 之固態陶瓷材料粉體進行比對，如圖 3.7(a)所示，我們可以明顯的看出 Li₁₀SnP₂S₁₂ 粉體在空氣中兩週後會有吸濕現象，透過 XRD 檢測發現其結構轉變，如圖 3.7(b)，故如文獻中所提，Li₁₀SnP₂S₁₂ 只能於手套箱中合成，無法暴露於空氣中。圖 3.7(c)(d)可看出我們所合成的 LₓMᵧS 粉體其外觀並不會受到空氣中溼氣而有明顯的改變，且在空氣中至兩週後，XRD 繞射分析也未有明顯的相結構改變。此外，我們也特意使用微量的去離子水滴在兩者粉體上觀察其變化，如圖 3.7(e)可以肉眼明顯看到 Li₁₀SnP₂S₁₂ 在水中完全溶化開，而對比自製
LₓMᵧS 粉體並不會受到水的影響，再次說明我們所製備 LₓMᵧS 粉體所具有之特色與優勢。

(a)：LM1.3S-550

<table>
<thead>
<tr>
<th>element</th>
<th>Weight%</th>
<th>Atomic%</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1.92</td>
<td>7.28</td>
</tr>
<tr>
<td>S</td>
<td>30.75</td>
<td>58.26</td>
</tr>
<tr>
<td>M</td>
<td>67.33</td>
<td>34.46</td>
</tr>
</tbody>
</table>

(b)：LM1.2S-550

<table>
<thead>
<tr>
<th>element</th>
<th>Weight%</th>
<th>Atomic%</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1.72</td>
<td>6.47</td>
</tr>
<tr>
<td>S</td>
<td>31.9</td>
<td>59.88</td>
</tr>
<tr>
<td>M</td>
<td>66.38</td>
<td>33.66</td>
</tr>
</tbody>
</table>

(c)：LM1.1S-550

<table>
<thead>
<tr>
<th>element</th>
<th>Weight%</th>
<th>Atomic%</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>2.31</td>
<td>8.60</td>
</tr>
<tr>
<td>S</td>
<td>31.39</td>
<td>58.19</td>
</tr>
<tr>
<td>M</td>
<td>66.30</td>
<td>33.21</td>
</tr>
</tbody>
</table>
圖 3.6 不同組成比之前驅物經 550 ℃ 下的煅燒硫化反應，所得 LxMyS 之粉體之之選區 EDS 組成分析
Li_{10}SnP_2S_{12}

暴露於空氣中 2 週 Li_{10}SnP_2S_{12}

(LM1.3S-550)

暴露於空氣中 2 週 LM1.3S-550

2 weeks

LM1.3S-550

2 weeks
圖 3.7 (a) 分成 $\text{Li}_{10}\text{SnP}_2\text{S}_{12}$ 市售粉體和其暴露於空氣中 2 週之光學照片；(b) $\text{Li}_{10}\text{SnP}_2\text{S}_{12}$ 市售粉體經暴露空氣前後之 XRD 圖；(c) 我們所製程之 LM1.3S-550 粉體和其暴露於空氣中 2 週之光學照片；(d) LM1.3S-550 粉體經暴露空氣前後之 XRD；(e) $\text{Li}_{10}\text{SnP}_2\text{S}_{12}$ 與 LM1.3S-550 粉體分別接觸水後之光學照片
三、電性測試

由不同組成及高溫硫化處理來持續修改粉體實驗製程參數，我們先會將 0.2 g 煙燻後粉體壓成碇以四點探針測得其電阻值極高，或可間接說明其電子傳導率極低，代表可能為好的 Li 離子導體材料。由於煙燻後粉體所製成碇其緻密度不高，量測電性時容易造成碇破碎無法準確得知面積與厚度，故改成以合成粉體壓碇後再煙燻，來提高緻密度與強度。

我們進行化學合成所得粉體先壓碇再進行煙燻等方式尋找更高的離子電導值。如圖 3.8 所示，分別使用 SS 不鏽鋼及 Li 金屬當作上下電極，將碇夾在其中，以電化學阻抗頻譜法(Electrochemistry Impedance SpectrScopy, EIS)量測交流阻抗，經由公式換算，可推算出離子電導率。當壓碇模具有問題，使其押出之碇受力不均，表面平整度不足，在電性方面容易造成接觸不良，導致如圖 3.8(a)(b)之失敗的 EIS 量測，圖 3-8(c)(d)(e)(f)係變更電極設計比較後所得結果。由同様的固態電解質碇但不同的電極可發現，使用鋰當作正負極材料有較好的接觸面積始能更真實量測固態電解質之離子電導率或固態電解質碇的電阻值。
透過不同極板確認採用雙鋰極板為最佳條件後，我們依照圖 3.9示意圖，進行一系列的比較，從 \(\text{Li: M=1.1:1, Li: M=1:1, Li: M=1:1.1, Li: M=1:1.2, Li: M=1:1.3} \) 的前驅物組成變化，以及不同的硫化溫度於雙鋰極板下進行系統性的電化學 EIS 阻抗量測，如圖 3.10 所示。我們可以從中看出，不同的組成及不同的硫化溫度變化對電阻值的影響，並採用圖 2.1 的等效模擬電路圖，積分出所對
應LxMxS系列的電阻值，並利用公式(3)帶入LxMxS厚度為0.1 cm，半徑為0.5 cm的圓碇面積，算出電導率，即得出我們材料的鋰離子傳導率。為了方便討論，將其整理於表3.1。我們從表3.1中得知不同比例的Li、M前驅體合成，配合硫化500°C、550°C、600°C，目前LM1.3S-550可得最佳固態陶瓷導鋰離子粉體之參數，其鋰離子傳導率已經達到2.487×10⁻⁴ S/cm。

將核能研究所之高分子進行混成並與NEI已發表文獻相同製程所製備Li₁₀SnP₂S₁₂之粉體進行比較，如圖3.11(a)所示，固態陶瓷材料NEI Li₁₀SnP₂S₁₂之粉體在EIS測定後其鋰離子傳導率8.059×10⁻⁴ S/cm，該粉體比此計畫製備的粉體有相對較佳的鋰離子傳導率，但該粉體須完全在手套箱中製備且完全封管後退火，製備來說非常不容易。相對於我們的粉體其鋰離子導電度略低，但可在空氣中製備，相對而言可有发展空间。由圖3.11(b)所示，採用核能研究所鋰傳高分子與我們固態陶瓷導鋰離子粉體混成測試EIS其離子傳導率可高達3.19×10⁻³ S/cm，代表混成概念應用於鋰離子固態電解質是可行的。

圖3.9 C2032 鈕扣型電池組裝示意圖
\[\kappa = \frac{0.1 \text{cm}}{1008 \Omega \times \pi \times (0.5 \text{cm})^2} = 1.263 \times 10^{-4} \text{ S/cm} \]

\[\kappa = \frac{0.1 \text{cm}}{7709 \Omega \times \pi \times (0.5 \text{cm})^2} = 1.652 \times 10^{-5} \text{ S/cm} \]

\[\kappa = \frac{0.1 \text{cm}}{570 \Omega \times \pi \times (0.5 \text{cm})^2} = 2.234 \times 10^{-4} \text{ S/cm} \]

\[\kappa = \frac{0.1 \text{cm}}{3312 \Omega \times \pi \times (0.5 \text{cm})^2} = 3.844 \times 10^{-5} \text{ S/cm} \]
\[\kappa = \frac{0.1\,cm}{16247 \,\Omega \times \pi \times (0.5\,cm)^2} = 7.837 \times 10^{-5} \,S/cm \]

\[\kappa = \frac{0.1\,cm}{661 \,\Omega \times \pi \times (0.5\,cm)^2} = 1.926 \times 10^{-4} \,S/cm \]

\[\kappa = \frac{0.1\,cm}{1428 \,\Omega \times \pi \times (0.5\,cm)^2} = 8.916 \times 10^{-5} \,S/cm \]

\[\kappa = \frac{0.1\,cm}{2231 \,\Omega \times \pi \times (0.5\,cm)^2} = 5.707 \times 10^{-5} \,S/cm \]

\[\kappa = \frac{0.1\,cm}{590 \,\Omega \times \pi \times (0.5\,cm)^2} = 2.158 \times 10^{-4} \,S/cm \]

\[\kappa = \frac{0.1\,cm}{512 \,\Omega \times \pi \times (0.5\,cm)^2} = 2.487 \times 10^{-4} \,S/cm \]
不同比例的 L_xM_yS 前驅體於壓碇後，經不同溫度的煅燒硫化所得 (a) $L_{1.1}M_{1.3}S-550$；(b) L_xM_yS-550；(c) $LM_{1.1}S-500$；(d) $LM_{1.1}S-550$；(e) $LM_{1.1}S-600$；(f) $LM_{1.2}S-500$；(g) $LM_{1.2}S-550$；(h) $LM_{1.2}S-600$；(i) $LM_{1.3}S-500$；(j) $LM_{1.3}S-550$；(k) $LM_{1.3}S-600$。碇材，以雙鋰極板進行 EIS 量測以得到離子導電率

$$\kappa = \frac{0.1 \text{cm}}{7992 \Omega \times \pi \times (0.5 \text{cm})^2} = 1.593 \times 10^{-5} \text{ S/cm}$$

圖 3.10 不同比例的 L_xM_yS 前驅體於壓碇後，經不同溫度的煅燒硫化所得 (a) $L_{1.1}M_{1.3}S-550$；(b) L_xM_yS-550；(c) $LM_{1.1}S-500$；(d) $LM_{1.1}S-550$；(e) $LM_{1.1}S-600$；(f) $LM_{1.2}S-500$；(g) $LM_{1.2}S-550$；(h) $LM_{1.2}S-600$；(i) $LM_{1.3}S-500$；(j) $LM_{1.3}S-550$；(k) $LM_{1.3}S-600$。碇材，以雙鋰極板進行 EIS 量測以得到離子導電率。
表 3.1 不同前驅物成分比例與硫化溫度所得 L_xM_yS 鋰離子傳導率

<table>
<thead>
<tr>
<th></th>
<th>500 °C</th>
<th>550 °C</th>
<th>600 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{1.1}MS$</td>
<td></td>
<td>1.263×10^{-4} S/cm</td>
<td></td>
</tr>
<tr>
<td>$L_{x}M_{y}S$</td>
<td></td>
<td>1.652×10^{-5} S/cm</td>
<td></td>
</tr>
<tr>
<td>$LM_{1.1}S$</td>
<td>2.234×10^{-4} S/cm</td>
<td>3.844×10^{-5} S/cm</td>
<td>7.837×10^{-6} S/cm</td>
</tr>
<tr>
<td>$LM_{1.2}S$</td>
<td>1.926×10^{-4} S/cm</td>
<td>8.916×10^{-5} S/cm</td>
<td>5.707×10^{-5} S/cm</td>
</tr>
<tr>
<td>$LM_{1.3}S$</td>
<td>2.158×10^{-4} S/cm</td>
<td>2.487×10^{-4} S/cm</td>
<td>1.593×10^{-5} S/cm</td>
</tr>
</tbody>
</table>
圖 3.11 (a) 固態陶瓷 NIE Li_{10}SnP_{2}S_{12} 之粉體；(b) 核能研究所鋰傳高分子與我們固態陶瓷導鋰離子粉體混成後所得混成材料之電化學阻抗 EIS 測試
四、核能研究所合作之電池測試

採用核能研究所標準製作流程來進行可撓式全固態鋰電池的製作，嘗試了將粉體與核能研究所研究之導電高分子進行混和，組成半電池測試，如圖 3.12 示意圖。這方面的研究目前進行了多方面的嘗試，目前使用核能研究所研發之高分子添加不同比例的固態陶瓷高鋰傳粉體 LₓMₓS 及鋰鹽，並以 High voltage LiCoO₂ 高電壓鋰鈷氧正極，負極選擇鋰金屬，進行充放電測試以及 CV 量測。圖 3.13(a,b,c) 分別為添加 0%LₓMₓS、5%LₓMₓS 及 20%LₓMₓS 之全固態混成電解質所製得的半電池 CV 測試，從圖 3.13(a)可看出無添加 LₓMₓS 約在 4.6 V 產生氧化電流，電流值隨著圈數增加，直到 0.35 mA。在還原部分 3.4 V 和 3.95 V 有兩個小的 peaks，不過電流不大。從 3.13(b)添加 5%LₓMₓS 之全固態混成電解質所製得的半電池 CV 測試，約 4.6 V 產生氧化電流，電流值隨著圈數增加，直到 0.44 mA。在還原部分 3.6 V 和 3.95 V 有兩個小的 peaks，不過電流不大，並無其他反應產生。圖 3.13(c)添加 20%LₓMₓS 之全固態混成電解質所製得的半電池 CV 測試，約 4.6 V 產生氧化與還原電流，電流值隨著圈數增加，直到 0.66 mA 和 -0.2 mA。在還原部分 3.6 V 和 3.95 V 有兩個小的 peaks，不過電流不大，並無其他反應產生。實驗證實，經過 LₓMₓS 與高分子混成製得之固態電解質在 500 cycle 下均無副產物產生，與計畫預期吻合。

圖 3.14 為採用高電壓 LCO 正極，電解質為核能研究所鋰傳高分子搭配 5%LₓMₓS 與 20%TMS 電解液所製得電池之充放電循環圖。

從第一圈開始與後續圈數相比，起始電壓較高，表示可能鋰離子通道還沒有打通，需要活化，使鋰離子通道重新排列，方便鋰離子傳遞。
此外，經單位轉換成放電電容量對圖數形成循環壽命圖如圖 3.15，可證明放電電容量隨著圖數提升至第 30 圈開始趨於穩定，而目前已跑到 60 圈，仍沒有明顯的衰退。透過計算目前能量密度有 583 Wh/L，高於預期目標，可由此高分子與導鋰離子固態陶瓷材料形成混成固態電解質，具發展潛力。

預計明年可持續調整 L_xM_yS 之組成、硫化處理條件與摻雜/固溶處理，可望繼續提高 L_xM_yS 的鋰離子傳導率，並希望能針對 L_xM_yS 做無高分子之添加之 L_xM_yS 薄膜組裝成薄膜電池元件並進行電池測試。

圖 3.12 使用高分子電解質及固態陶瓷電解質混成之全固態鋰電池製作示意圖
圖 3.13 使用核能研究所高分子電解質並添加 (a) 0% LₓMᵧS；(b) 5% LₓMᵧS；(c) 20% LₓMᵧS 固態陶瓷電解質之混成固態電解質之 CV 檢測

圖 3.14 High voltage LCO 正極、核能研究所之鋰傳高分子搭配 5% LₓMᵧS 與 20% TMS 電解液所得電池之充放電循環圖

圖 3.15 High voltage LCO 正極、核能研究所鋰傳高分子搭配 5% LₓMᵧS 與 20% TMS 電解液所得電池之循環壽命圖；
四、結論

於執行「永續能源系統之室內環境能源捕獲器開發與研究」計劃中，室內環境能源捕獲器接需搭配電池系統，一方面提供穩定電力，另一方面儲存離峰時的電量，利用電池提供居家生活多項器件之電力需求，甚至可提供電動車充電所需。目前鋰電池雖然有許多應用，但是電解質短路燃燒以及電池重量都是目前要迫切解決的問題，全固態鋰離子電池或許是解決以上兩項問題的技術，但是目前研究有限，商品化還沒實現。

本研究研發全固態鋰電池，採用新型硫化物基的鋰傳導體作為固態電解質，此鋰離子導體屬鋰硫化物(LₓMᵧS)系統，研究主要合成與反應得到此鋰硫化物粉體，對材料的離子導電率、微結構、組成等進行分析，再將此粉體與高分子電解質混成為混成固態電解質，應用於電池組裝與元件性質量測，所得結論如下分別敘述：

1. 此計畫中採用物理合成法及化學沉析法兩種方式進行超鋰離子導體之開發。物理合成法所製備出粉體，因粉體不易於實驗室保存故放棄該製程；化學沉析法成功製備出一個對溫度不敏感的LₓMᵧS粉體，在正常的大氣下，可使此材料比純硫化物更為安定而不需要在手套箱中合成，是一個有趣發現。

2. 經由不同前驅物配比下合成，我們可以從XRD及SEM去對此材料做物理性的分析，並且與市面上所有的高鋰離子導電率的電解質相比，證實我們所合成出LₓMᵧS系統是穩定的。
3. LₓMᵧS 系統中，不同比例下合成及透過不同溫度下硫化其經過 EIS 电性檢測後以 LM₁.₃S-550 鋰離子電導率達到 2.487 × 10⁻⁴ S/cm，並且與核能研究所之高分子進行混成將其作電性測試，其鋰離子電導率高達 3.19×10⁻³ S/cm，遠遠高於計畫預期 5 × 10⁻⁴ S/cm。

4. 並將此混成固態電解質與 High voltage LCO 搭配組半電池進行 CV 量測，且已能達到計畫標準 500 cycles。

5. 透過充放電測試，目前進行測試已達 60 圈且無衰退現象，此充放電測試持續進行，並且可以達到 583 Wh/L 能量密度，達到計畫預期。

6. 本研究進行充放電到 60 圈，由於無損耗現象，距離計畫目標 200 cycles 看來是非常有機會的。

7. 未來此計畫預計將 LₓMᵧS 系統中的錫含量繼續提高，可以找到更高的鋰離子傳導率之固態陶瓷高鋰傳粉體或是嘗試更多種類之高分子進行不同的混成搭配，尋找更佳的固態電解質。
肆、参考文献

1. 程品皓，锂离子電池添加劑之開發，台灣科技大學化學工程系碩士畢業論文，2013。
2. 郭昭延，鋰離子電池電池技術之研究，台灣科技大學化學工程系碩士畢業論文，2014。
3. 黃可龍、王兆祥、劉素琴，鋰離子電池原理與關鍵技術，北京，化學工業出版社，2007。
5. 万萍萍，把握下一代電池技術方向，佈局全固態電池，高工鋰電，2015。
9. P. Bron, S. Dehnen, B. Roling, Li_{10}Si_{0.3}Sn_{0.7}P_{2}S_{12} – A low-cSt and low-grain-boundary-resistance lithium superionic conductor, Journal of Power Sources 329 (2016) 530–535.
11. T. Holzmann, L. M. Schoop, M. N. Ali, I. Moudrakovski, G. Gregori, J. Maier, R. J. Cava, B. V.Lotsch, Li_{0.6}[Li_{0.2}Sn_{0.8}S_{2}] – a layered lithium

12. 林月微、方家振，高安全高分子電解質，工業材料，323 (2013) 60–69。

14. 林月微、方家振。鋰離子電池用高分子電解質，323 (2015) 60-69。

16. 陳浩銘、林泱蔚、林滄浩，高分子型鋰離子二次電池介紹，台大化學系。

25. 吳俊彥、廖譽凱、劉如熹、胡淑芬，可撓式全固態薄膜鋰離子電池，奈米通訊，8–13.